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1. Introduction

Machine Learning is a field in computer science where statistical techniques are used to
learn from training data in order to perform well on a task. Due to more availability
of data and faster processing tools, this research discipline has gotten more and more
attention in recent years. From the first image classifiers that are comparable to human
level to text processing systems that are able to extract main sentiments of a tweet,
the development in this area has been quite astonishing. Outside of research, more of
these systems are applied now than ever – be it algorithms automatically translating
between two given natural languages, as Google Translate does, or the development of
the first self-driving cars. This warrants questions about the security and reliability of
these systems. To give performance guarantees about Machine Learning algorithms, we
turn to a theoretical, mathematical rigorous approach.

The discipline in Machine Learning that is possibly best understood in theory is super-
vised learning. In supervised learning, the task is to predict correct labels for feature
vectors, after having seen training data consisting of features and labels. One example
for this task is labeling hand written figures correctly to the numbers from 0 to 9, after
having seen several correctly labeled instances. A learner A will choose a hypothesis,
that is, a function mapping a feature vector to a label. This can be interpreted as a
prediction for the correct label, given the feature vector. We usually assume our training
data and test data to come from the same distribution. Under this assumption, there
have been results that relate the empirical risk of a hypothesis, i.e., a measure for the
difference between the correct labeling and the labeling predicted by the hypothesis av-
eraged over all elements of the training data, and the true risk, that is, the expected
value of this difference on new data (e.g., the test data). Statistical learning theory in-
troduces measures for the complexity of a hypothesis class H like the VC-dimension and
the Rademacher Complexity. It then shows that for low complexities of H the difference
between the empirical and the true risk will uniformly converge to zero with the number
of training data points approaching infinity. Under the realizability assumption, which
states that the true labeling is an element of H, this implies that for a given ε one can
bound the data points needed for the learner A to output a classifier, in such a way that
the true risk of that classifier with high probability does not exceed ε. In particular, this
upper bound for the sample complexity is independent of the marginal distribution of
the feature vectors, as long as the marginal distribution of training and test data stays
the same. Furthermore, the No-Free-Lunch Theorem tells us that without restricting the
complexity of a hypothesis class we do not get finite sample bounds. In other words,
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1. Introduction

we need prior knowledge of our labeling data, in order to get meaningful finite sample
bounds.

However, in reality we often find that this assumption about training and test data being
distributed identically is violated. For example one can imagine an image recognition
algorithm being fed training data from one photographer, who might use certain camera
setup for all their pictures, while the test data consists of photos taken with a greater
variety of setups. Another, possibly more relevant, example would come from different
lightings or weather conditions of a scene. Imagine a self driving-car that only learned to
drive by daylight on unclouded summer days. We would like this car to be able to drive
without accidents in rain as well.

Therefore, we are interested in guarantees about learnability for settings where a domain
shift happens, i.e., a shift in distributions between training data and test data. This
problem is known in Machine Learning as the Domain Adaptation problem, where we
assume that our training data is generated by some source distribution and the test data
(or rather the data our learned hypothesis will be used for) comes from some (different)
target domain.

There has been some theoretical work examining what kinds of assumptions about the
distribution shift help to get learning guarantees in this setting (e.g.,Ben-David et al.
(2006, 2012, 2010b), Mansour et al. (2009), Ben-David and Urner (2012)). Some of
these works have introduced concepts like the H-divergence and the discrepancy distance,
which measure the similarity between source and target distributions with respect to the
supervised learning problem one tries to solve. While these concepts lead to some positive
results – that is if source and target distributions are similar in these measures, we obtain
learning guarantees – we often do not have a good intuition about these quantities in
practice, as they often do not reflect our prior knowledge of the learning problem.

Other concepts like covariate shift, i.e., only the marginal distribution of the features
changes while the labeling/regression function stays the same in both source and target
domains, are often better motivated in practice: Going back to our image recognition
example, we can assume that the (true) labeling of an object should not change dependent
on the light conditions in which the photograph was taken. Unfortunately, there are some
theoretical results Ben-David et al. (2010b), Ben-David and Urner (2012) that show
that covariate shift alone is not sufficient to get guarantees about domain adaptation
learnability. However, the counter examples given in these papers seem quite artificial and
the resulting impossibility results do not seem to reflect the success of domain adaptation
algorithms in reality. Therefore, it is likely that there still exist other criteria – criteria
that are often fulfilled in practice, but not by these counter examples and that make
domain adaptation learning possible. One such criterion might consist of an assumption
about how the label space and the feature space relate in terms of causality.

Causality and its impact on Machine Learning has gotten increasing attention in recent
years. There has been an empirical study (Schölkopf et al. (2013)), dividing data sets
by causal direction, that is if the features caused the labels, then a data set is said to be
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causal and if the labels caused the features then they are called anti-causal. Data-sets for
which the authors believed, that the cause of the correlation between features and labels
was neither the features nor the labels, but a third variable, were called confounded. The
study used several semi-supervised learning algorithms and compared them to supervised
methods. The results of this study suggested that semi-supervised learning only improves
corresponding supervised learning methods for anti-causal and confounded data sets.
Some theoretical results (Janzing and Schölkopf (2015)) have provided proofs for this
hypothesis in certain causal scenarios, like the Information Geometric Causal Inference
(IGCI) model. There has also been some work that suggests, that assumptions about
the causal structures also help for transfer learning and domain adaptation, giving a
generalization of covariate shift(Rojas-Carulla et al. (2018)). However, this work assumes
there to be several source domains instead of only one source domain. In contrast to this
work, this thesis will mainly focus on the original domain adaptation setting, with only
one source domain.

The main question this thesis tries to answer is whether assumptions about the underlying
causal structure of the data can help to overcome existing lower bounds for DA learning.
In particular, we will examine the Principle of Independence of Cause and Mechanism
as a criterion for causality.

In practice we often know more about the underlying causal structure of a problem, i.e.,
whether the labels cause the features or vice versa, than we know about the H-divergence
of a distribution shift. Furthermore, if a change in distribution happens from source to
target, it is likely that the underlying causal structure stays the same. Additionally,
in the counter examples from Ben-David et al. (2010b), Ben-David and Urner (2012),
the labeling and the distribution of the features seem to be constructed dependently.
Therefore this construction might violate the Principle of Independence of Cause and
Mechanism.

We will look at several formalizations of the Principle of Independence of Cause and
Mechanism and their use for domain adaptation. We will mostly focus on the Information
Geometric Causal Inference (IGCI) model as introduced in Janzing et al. (2012). We will
give several attempts to adapt this criterion for binary classification and investigate its
use for domain adaptation. Indeed, we can show that these criteria are violated by
the counter example for Domain Adaptation (DA) learnability given in Ben-David and
Urner (2012). However we will also show that there are similar problem sets that do
fulfill our IGCI-model inspired criteria and that also serve as counter examples for DA-
learnability.

In Chapter 2 we will briefly introduce the main results from Learning Theory for super-
vised learning. In Chapter 3 we will give a short summary of several formalizations of
causality, in particular we will discuss formalizations of the Principle of Independence
of Cause and Mechanism. In Chapter 4 we will then give a summary and discussion
of existing results for domain adaptation. In particular we will discuss a lower bound
from Ben-David and Urner (2012). In Chapter 5 we will present our results about DA
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1. Introduction

learnability under causal assumptions. Finally Chapter 6 gives a short discussion of these
results.
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2. Foundations of Learning Theory

In this chapter we will introduce the basic concepts of learning theory with respect to
supervised learning. This includes a formal introduction of the setting, of the definitions
of PAC learnability and uniform convergence. In the end of this chapter we will state the
main theorem of the Vapnik-Chervonkevis theory. The definitions and theorems given
in this chapter will mostly be taken from Shalev-Shwartz and Ben-David (2014). This
chapter is meant as a brief summery of these concepts. For a more extensive introduction
as well as for proofs we would refer the reader to Shalev-Shwartz and Ben-David (2014).

In supervised learning, a learner receives a sample S of pairs (xi, yi) of feature vectors
(or instances) xi and labels yi and tries to predict the label of new unlabeled instances
xj .
To make this definition more formal, let X be the feature domain and Y be the label
domain. A learner A :

⋃∞
n=1(X × Y)n → YX is a function taking a finite sample S of

pairs (xi, yi) with xi ∈ Xi and yi ∈ Y as input and outputting functions from X to Y .

For supervised learning, we will assume that the pairs (xi, yi) are identically and inde-
pendently drawn from some distribution P over X × Y. We will refer to the marginal
distribution over the feature vectors as D, i.e., D(A) = P (A, {0}) + P (A, {1}) for all
A ⊂ X . Furthermore, for the case of binary classification, i.e. Y = {0, 1}, the labeling
function f : X → [0, 1] for a joint distribution P is defined by f(x) = P (yi = 1|xi = x),
where P (yi = 1|xi = x) denotes the conditional probability of the label 1 given the
feature x. A labeling function is said to be deterministic if it only takes values in {0, 1}.

A good learner will be a learner that outputs a function h ∈ YX such that for a new
unlabeled data point xj , the value h(xj) will likely be a “good prediction” for the corre-
sponding (unknown) label yj . In order to judge whether a prediction is good or not, we
will need the concept of a loss function.

Definition 1 (Loss function). A loss function is a function l : YX × X × Y → R+ that
takes as input a function h from the feature space X to the label space Y and a data point
(x, y) and outputs a positive real value, rating the prediction h(x) for the label y. The
smaller the value l(h, x, y), the better the prediction.
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2. Foundations of Learning Theory

Dependent on the label space Y and the underlying problem some loss functions are
preferable to others. For binary classification, the common choice of loss function is the
0-1-loss:

Definition 2 (0-1 loss). The 0-1-loss is the loss function l : YX ×X ×Y → R+, defined
by l(h, x, y) = 1[h(x) 6= y], where 1 is the indicator function.

For regression (i.e., if we have Y = R ) we can still use the 0-1-loss, but then all false
predictions will be judged to be equally bad. However, in most use-cases, a (false)
prediction h(xi) that is close to yi, will be viewed as better than a prediction h′(xi) that
is further away from yi. This judgment is reflected in the `2-loss which is most commonly
used in regression.

Definition 3 (`2-loss). Let Y be a space, where the `2-norm ‖ · ‖2 is defined. Then the
`2-loss is defined as loss function l : YX ×X × Y → R+ with l(h, x, y) = ‖h(x)− y‖22.

Note that for Y = {0, 1} ,the `2-loss is defined, but equivalent to the 0-1-loss. However,
for classification with multiple labels the `2-loss is not necessarily defined.
Now if we wish to select a good hypothesis, we would like to take one that has low
expected loss for the underlying probability distribution. This leads us to the next
definition.

Definition 4 (Risk function). For a given loss-function l let L be the risk function with
respect to a probability distribution P , defined as the expected value of l over pairs (x, y),
i.e., LP (h) = E(x,y)∼P [l(h, x, y)]. Sometimes instead of regarding the data-generating
process as given by P , we will view it as given by the marginal distribution D and the
labeling function f . In that case we will sometimes refer to LP (h) by L(D,f).

Accordingly, we will define the empirical risk for a hypothesis h as the average of all loss
terms l(h, xi, yi) with sample points (xi, yi).

Definition 5 (Empirical risk). For a given loss function l and a sample S = {(x1, y1), . . . , (xn, yn)},
the empirical loss LS(h) of a hypothesis h is defined as

LS(h) =
1

n

n∑
i=1

l(h, xi, yi)

Our hope will be that the empirical risk LS(h) is a good estimate for the true risk LP (h).
Furthermore, a learner A is called an empirical risk minimizer for the hypothesis class
H, if A(S) ∈ arg minh∈H LS(h).

The next theorem will show us that for large domains X (in particular infinite ones)
any learner A (empirical risk minimizers included) the true risk can still be high (if the
size of the training set is not proportional to the domain size), if we do not restrict the
hypothesis class H from which A selects, i.e. H = 2X .

14



Theorem 1 (No-Free-Lunch Theorem, Theorem 5.1 from Shalev-Shwartz and Ben-David
(2014)). Let A be any learning algorithm for the task of binary classification with respect
to the 0-1 loss over a domain X . Let m be any number smaller than |X |2 representing a
training set size. Then there exists a distribution P over X × {0, 1} such that:

1. There exists a function g : X → {0, 1} with LP (g) = 0.

2. With probability of at least 1
7 over the choice of S ∼ Pm we have LP (A(S)) ≥ 1

8 .

We therefore see, that in general – i.e., for infinite domains X – an empirical risk mini-
mizer (or any other learner) will not be able to approximate the true labeling function
correctly, unless we make further assumptions about H. We will now characterize the
learnability of a problem by the hypothesis class H of possible outputs of the learner A.
We will first look at (PAC) learnability in the realizable case.

Definition 6 (Realizability). Given a hypothesis class H and a distribution P , we will
denote the optimal hypothesis of H with respect to P as optP (H) = infh∈H LP (h). We
say that a learning problem is realizable, if optP (H) = 0. In particular, if there is a
h ∈ H, with h(x) = f(x) for all x ∈ X , we do have realizability.

Definition 7 (Probably Approximately Correct (PAC) Learnability, Definition 3.1 from
Shalev-Shwartz and Ben-David (2014)). A hypothesis class H is Probably Approximately
Correct (PAC) learnable if there exists a function mH : (0, 1)2 → N and a learning
algorithm with the following property: For every ε, δ ∈ (0, 1), for every distribution D
over X , and for every labeling function f : X → {0, 1}, if the realizable assumption holds
with respect to H,D, f then when running the learning algorithm on m ≥ mH(ε, δ) i.i.d.
samples generated by D and labeled by f , the algorithm returns a hypothesis h such that,
with probability of at least 1− δ (over the choice of of samples), L(D,f)(h) ≤ ε.

With this definition, we obtain a corollary about PAC learnability from the No-Free-
Lunch Theorem.

Corollary 1 (Corollary 5.2 from Shalev-Shwartz and Ben-David (2014)). Let X be an
infinite domain set and let H be the set of all functions form X to {0, 1}. Then H is not
PAC learnable.

We therefore see that, in order for H to be PAC learnable, its complexity needs to
be restricted. We will now introduce the concept of Vapnik-Chervonenkis dimension,
which quantifies this complexity and, as we will later see, fully characterizes the PAC-
learnability of a hypothesis class.

To that aim, we first need to define shattering. For the following definition let HC be
the restriction of a hypothesis class H to a subset C ⊂ X .

Definition 8 (Shattering, from Shalev-Shwartz and Ben-David (2014)). A hypothesis
class H shatters a finite set C ⊂ X if the restriction of H to C is the set of all functions
from C to {0, 1}. That is, |HC | = 2|C|.
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2. Foundations of Learning Theory

Now we can define the VC-dimension of a hypothesis class H as the maximal size of a
subset C ⊂ X that can be shattered.

Definition 9 (VC-Dimension, from Shalev-Shwartz and Ben-David (2014)). The VC-
dimension of a hypothesis class H, denoted V C(H), is the maximal size of a set C ⊂ X
that can be shattered by H. If H can shatter sets of arbitrarily large size we say that H
has infinite VC-dimension.

As we will see, having a finite VC-dimension will imply PAC learnability. But before
we state the corresponding theorem, we will first introduce the concept of agnostic PAC
learnability — a version of PAC learnability, that does not require realizability.

Definition 10 (Agnostic PAC Learnability, Definition 3.3 from Shalev-Shwartz and
Ben-David (2014)). A hypothesis class H is agnostic PAC learnable if there exists a
function mH : (0, 1)2 → N and a learning algorithm with the following property: For every
ε, δ ∈ (0, 1) and for every distribution P over X×Y, when running the learning algorithm
on m ≥ mH(ε, δ) i.i.d. samples generated by P , the algorithm returns a hypothesis h such
that, with probability of at least 1− δ (over the choice of the m training samples),

LP (h) ≤ min
h′∈H

LP (h′) + ε

Finally, we will introduce the concepts of uniform convergence of a hypothesis class,
which will link the empirical risk LS with the true risk LP . If we know these two terms
to be close, this gives us a result about the true risk of empirical risk minimizers.

Definition 11 (Uniform convergence, Definition 4.3 from Shalev-Shwartz and Ben-David
(2014)). We say that a hypothesis class H has the uniform convergence property (w.r.t.
a domain Z and a loss function l) if there exists a function mUC

H : (0, 1) → N such that
for every ε, δ ∈ (0, 1) and for every probability distribution P over X × {0, 1}, if S is a
sample of m ≥ mUC

H (ε, δ) examples drawn i.i.d. according to P , then, with probability of
at least 1− δ we get

for all h ∈ H, |LS(h)− LP (h)| ≤ ε

Finally we can state the fundamental theorem of statistical learning as provided in Shalev-
Shwartz and Ben-David (2014), which shows the equivalence of PAC-learnability, uniform
convergence and finite VC-dimension of a hypothesis class.

Theorem 2 (The Fundamental Theorem of Statistical Learning, Theorem 6.7 from
Shalev-Shwartz and Ben-David (2014)). Let H be a hypothesis class of functions from
a domain X to {0, 1} and let the loss function be the 0-1 loss. Then the following are
equivalent:

1. H has the uniform convergence property.

2. Any ERM rule is a successful agnostic PAC learner for H.
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3. H is agnostic PAC learnable.

4. H is PAC learnable.

5. Any ERM rule is a successful PAC learner for H.

6. H has a finite VC-dimension.

Another version of this theorem (also taken from Shalev-Shwartz and Ben-David (2014))
gives explicit bounds for the sample complexities (i.e. a bound for the number of training
data one needs to see in order to have learned a task up to a given error).

Theorem 3 (The Fundamental Theorem of Statistical Learning – Quantitative Version,
Theorem 6.8 from Shalev-Shwartz and Ben-David (2014)). Let H be a hypothesis class
of functions from a domain X to {0, 1} and let the loss function be the 0-1 loss. Assume
that V C(H) = d <∞. Then there are absolute constants C1, C2 such that:

1. H has the uniform convergence property with sample complexity

C1
d+ log(1

δ )

ε2
≤ mUC

H (ε, δ) ≤ C2
d+ log(1

δ )

ε2

2. H is agnostic PAC learnable with sample complexity

C1
d+ log(1

δ )

ε2
≤ mH(ε, δ) ≤ C2

d+ log(1
δ )

ε2

3. H is PAC learnable with sample complexity

C1
d+ log(1

δ )

ε
≤ mH(ε, δ) ≤ C2

d log(1
ε ) + log(1

δ )

ε
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3. Causality

In this chapter we will introduce some ideas that have been proposed for the formalization
of causality. In practice, we are often not only interested in the correlation between two
variables but in the underlying causal structure – which often gives us a better idea of
how an action might influence our situation. For example, a doctor would be interested
in knowing if prescribing a drug actually causes patients to get healthy rather than just
knowing if taking the drug and getting healthy just happen to co-occur. However, most
statistical analysis has focused on correlational statements. The focus on correlational
statements is likely due to the fact that correlational statements are easier to evaluate. If
we only have observational data our statistical test can only infer statements about the
correlation of two variables. But, as one often hears in introductory statistics courses,
correlation does not imply causation. Indeed in our previous example the events "taking
prescription drug" and "getting healthy" might have a joint probability distribution with
high correlation, if some (maybe more health-conscious) people are more likely than
others to get healthy soon, but also more likely to take a prescription drug. From just
observational data, one might even get the same probability distribution as in the case
where taking the drug causes the person to get healthy again. Thus, if we were to infer
statements about the underlying causality, we would need to intervene on some variables
and observe the change in other variables. A complete model of causality therefore needs
to not only make statements about the statistical properties of its variables, but also
about possible changes of variables under interventions.

In this section we will introduce several models of causality. First we will give a short
introduction to Structural Equation Models (SCMs, since they do account for interven-
tions. We will introduce the concept of the identifiability of the causal direction (for
observational data. We will then introduce Additive Noise Models (ANMs) as an exam-
ple of a restricted SCMs, were we sometimes do get identifiability. We then go on to
introduce the Principle of Independence of Cause and Mechanism and discuss several
formalizations of this principle, in particular, algorithmically independent conditionals
and the Information Geometric Causal Inference (IGCI) model. This chapter closely
follows Peters et al. (2017).

3.1. Structural Causal Models

One type of model that reflects the effect of interventions well, are the so-called structural
equation models. They consist of a directed graph with random variables as vertices. An
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3. Causality

arrow between two vertices indicates that the tail of this arrow is a direct cause for
the head of the arrow. In the case of observational data, this graph can be interpreted
similarly to a Bayes net, i.e., as a representation of factorization of the underlying joint
probability distribution. Furthermore, the model offers a description of how the distri-
bution would change if the distribution of one or several of the model’s vertices changed
due to some intervention.

We will now give an abbreviated definition of structural equation models that only takes
into account the causal direction between two variables (ignoring the possibility of con-
founders). This will suffice for our purposes, since we will only regard simple cause-effect
relations between feature vectors and labels in this thesis1. For a more complete intro-
duction to SCMs, we refer the reader to Peters et al. (2017) or Pearl (2009).

Definition 12 (Structural Causal Models). Let C and E random variables, where C is
the cause and E the effect. A structural causal model for C and E consists of a directed
graph G = ({C,E}, {AC→E}), where AC→E is a directed edge between vertices C and E,
and of two assignments

C := NC

E := fE(C,NE),

where NE and NC are two independently distributed random variables and fE is a func-
tion from the domains of C and NE to the domain of E. Thus, the SCM defines a joint
probability distribution for (C,E). Furthermore, the SCM tells us that under an inter-
vention (i.e., a direct change of one of the graphs variables), the other variables still need
to be consistent with the assignments. More precisely, if an intervention consists of a
replacement of C by some C ′, E becomes E′ := fE(C ′, NE). Whereas, if an interven-
tion consists of a replacement of E by some E′′, the corresponding C ′′ is still defined by
C ′′ = NC . In a probability statement, we will write "X = x" for an observed event x and
”do X = x” for an instance, were we intervened on X in order to be x.

An intervention in a structural causal model works by replacing a random variable X in
the causal model by a random variable X ′ and replacing the term X in the calculation
of all descendants of X by X ′. This way, if X is a cause of Y , the change of X will affect
Y , but if it is not a cause of Y , it will be unaffected by the change in X. The probability
of Y = y conditioned on actively setting the value for a variable in the causal model X
to a value x will be denoted by P (Y = y| do X = x). If Y is a cause of X, then this
conditional probability will usually be different from the conditional probability we get
by observational data, i.e. P (Y = y|X = x) 6= P (Y = y| do X = x). This is due to the
fact, that the distribution of Y will be independent of X after an intervention.

1Which is not to say that more complex causal models between feature vectors and labels are not
realistic or possibly relevant for domain adaptation learning.
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3.2. Causal and Anti-Causal Directions

3.2. Causal and Anti-Causal Directions

In subsequent chapters we will distinguish between the causal (i.e. the features X cause
the label Y ) and the anti-causal (i.e. the label Y causes the features X) direction, to
investigate whether they make a difference for the learnability of a problem. Therefore
we have to make this distinction formally. However, as we already mentioned and as
we will show now, this distinction cannot always be made if we only observe the joint
distribution PC,E .

Proposition 1 (Non-uniqueness of graph structures, Proposition 4.1 from Peters et al.
(2017)). For every joint distribution PX,Y of two real-valued variables there is an SCM

Y = fY (X,NY ), X ⊥⊥ NY ,

where fY is a measurable function and NY is a real-valued noise variable.

Proof. Analogous to Peters et al. (2017) for a given joint distribution PX,Y , define the
conditional cumulative distribution function

FY |x(y) := P (Y ≤ y|X = x)

and then
fY (x, nY ) := inf

y
{FY |x(y) | FY |x(y) ≥ nY }

Furthermore let NY be uniformly distributed on [0, 1] and independent of X. We can
see that the resulting SCM is consistent with PX,Y .

For a given joint distribution PX,Y , we can therefore define both an SCM, where X
looks like the cause and Y like the effect and an SCM, where Y looks like the cause
and X like the effect. Thus we see that the notation of SCMs itself is not sufficient
to distinguish causal directions (without the possibility of interventions). Therefore we
will need to make more assumptions about our causal model to be able to distinguish
causal directions. One of these assumptions can be restrictions on the class of possible
mechanisms fY (X,NY ) and noise-models.

3.2.1. Additive Noise Models

A typical way to restrict SCMs is by allowing only additive noise. This gives rise to
so-called additive noise models (ANMs).

Definition 13 (Additive noise models, Definition 4.4 from Peters et al. (2017)). The
joint distribution PX,Y is said to admit an ANM from X to Y if there is a measurable
function fY and a noise variable NY such that

Y = fY (X) +NY , NY ⊥⊥ X .
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3. Causality

These models are often realistic for physical data, since measurements are often subject
to sensory noise, which can be seen as influencing the result of Y independent of the
result of fY (X), and therefore can be seen as additive. Often the noise variable NY will
be further restricted to be gaussian (e.g. in Rojas-Carulla et al. (2018)).2 However this
might still not lead to an identifiable causal structure, as the next proposition will show.
The next proposition will show an example of an ANM that is not identifiable. The claim
of this proposition is a special case of Theorem 4.2 of Peters et al. (2017), which we will
later introduce as Theorem 4.

Proposition 2 (Non-identifiability of linear ANMs with Gaussian noise). Let X and
Y be real-valued random variables, such that PX,Y admits a linear ANM with gaussian
noise from X to Y , i.e., there are α, β ∈ R such that

Y = αX + β +NY ,

with X ⊥⊥ NY and NY ∼ N (0, σ2
N ) for some σ ∈ R. Furthermore let X be normally

distributed.
Then PX,Y also admits a linear ANM with gaussian noise from Y to X

Proof. IfX ∼ N (µX , σX) and NY ∼ N (0,∼2
N ), then Y = α1X+β1+NY is also normally

distributed with Y ∼ N (α1µX + β1, α
2
1σ

2
X + σ2

N ). Now if

1

(1− σ2
X

σ2
NY

)2(1 + σX
σNY

)
> α2

1,

we can define the random variable Z as follows

Z := α2X + β2 +NZ

with

α2 :=
α1σ

2
X − σ2

NY

α2
1σ

2
X

,

β2 := −α2α1µX − α2β1

and NZ ∼ N (0, σ2
NZ

) with NZ ⊥⊥ Y and σ2
NZ

= (1− α2α
2
1)σ2

X − α2σNY .
With this definition we obtain Z ∼ N (µX , σX) and Cov[X,Y ] = Cov[Z, Y ]. Therefore
the joint distributions P (X,Y ) and P (Z, Y ) are the same. Since P (Z, Y ) admits a linear
ANM with gaussian noise from Y to Z, P (X,Y ) also admits a linear ANM with gaussian
noise from Y to X.

2This can be motivated by the fact that sensory noise is often caused by many small independent
fluctuations influencing Y in an additive and independent way. Therefore NY can be seen as a
sum of many independently distributed random variables, which by the Central Limit Theorem is
approximately gaussian distributed.
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3.2. Causal and Anti-Causal Directions

For general linear ANMs, however, we can achieve identifiability, if NY is not Gaussian,
as is stated in the next theorem.

Theorem 4 (Identifiability of linear non-Gaussian models, Theorem 4.2. from Peters
et al. (2017)). Assume that PX,Y admits the linear model

Y = αX +NY , NY ⊥⊥ X

with continuous random variables X,NY , and Y . Then there exists β ∈ R and a random
variable NX such that

X = βY +NX , NX ⊥⊥ Y

if and only if NY and X are Gaussian.

For more general ANMs we get the following theorem.

Theorem 5 (Identifyability of ANMs, Theorem 4.5 from Peters et al. (2017)). For the
purpose of this theorem, let us call an ANM smooth if NY and X have strictly positive
densities pNY and pX and if fY , pNY and pY are three times differentiable. Furthermore
let X be the domain of X and Y be the domain of Y .
Assume that PY |X admits a smooth ANM from X to Y , and that there exists a y ∈ R
such that

(log pNY )′′(y − fY (x))f ′Y (x) 6= 0

for all but countably many values x. Then, the set of log densities log pX for which the
obtained joint distribution PX,Y admits a smooth ANM from Y to X is contained in a
3-dimensional affine space of the otherwise infinitely dimensional solution space RX+ for
log densities log pX .

This theorem implies that in the infinite dimensional space RX+ in which log densities
log pX for random variables in X lie, only log densities log pX in a three dimensional
subset leads to a joint distribution PX,Y that permit ANMs in both directions. We
therefore see that in most cases ANMs are a good and realistic restriction for a causal
model, and can make the causal direction identifiable. Therefore having a learning theory
based on these models might lead to results. However, we have also seen cases where
ANMs cannot distinguish between the two causal directions. A causal learning theory
based on ANMs must therefore be subject to further restrictions or can only make one-
directional conclusions of one of the two forms:

• Learning works in causal/anti-causal direction (but that implies that learning also
works in some anti-causal/causal cases)

• Learning does not work in causal/anti-causal direction (but that implies that learn-
ing also does not work in some anti-causal/causal cases)
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3. Causality

3.2.2. Independence of Cause and Mechanism

Another approach for determining the causal direction of a joint distribution (without
using interventions) is known as the “Independence of Cause and Mechanism”, which
states that the distribution of the cause PC should be independent of the mechanism fE
that produces the cause from the effect. The intuitive argument for this is that if we were
to intervene on the cause, the mechanism should stay the same (or change independently).
Note, that "independence" here does not necessarily mean statistical independence, since
the argument is also supposed to work for a deterministic mechanism. By knowing the
mechanism, we should not be able to infer anything about the distribution of the cause
– and vice versa. In Peters et al. (2017) this principle was framed in the following way.

Principle 1 (Independence of Cause and Mechanism, Principle 2.1 from Peters et al.
(2017)). The causal generative process of a system’s variable is composed of autonomous
modules, that do not inform or influence each other.
In the probabilistic case, this means that the conditional distribution of each variable
given its causes (i.e., its mechanisms) does not inform other conditional distributions.
Whenever there are only two variables, this reduces to an independence between the cause
distribution and the mechanism producing the effect distribution.

There have been several attempts to formalize this intuition, however, there has not yet
been an agreement about the correct formalization in the scientific community. Below,
we will review some of these approaches.

Minimal description length

One approach, inspired by algorithmic information theory, is to say that the minimal
description length of PC should not change with the knowledge of fE . To make this
definition formal, we need to introduce Kolmogorov complexity.

Definition 14 (Kolmogorov complexity). Let T be a universal turing machine. For any
binary string s, we define the Kolmogorov complexity KT (s) as the length of the shortest
program, denoted by s∗, for which T outputs s and then stops. Furthermore s∗ is called
the shortest compression of s. Let | · | denote the number of digits of a binary word. Then,

KT (s) := |s∗|

Note that the Kolmogorov complexity for a given string is only defined with respect
to a given Turing machine or description language. Dependent on the specifics of the
Turing machine, the Kolmogorov complexity of a given string can vary a lot, i.e., for
Turing machines T1 and T2 we can have KT1(s) 6= KT2(s). However, according to the
Invariance Theorem, for two given Turing Machines T1 and T2, there exists a constant
c (only dependent on T1 and T2), such that −c < KT1(s)−KT2(s) < c for all strings s.
Therefore we can speak of the Kolmogorov complexity of s without specifying the Turing
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3.2. Causal and Anti-Causal Directions

machine (up to an additive constant). Another problem of the Kolmogorov complexity
is that it is not computable.
Furthermore, we can define the conditional Kolmogorov complexity KT (s|t) of s given t,
as the length of the shortest program for T , when run on the input string t, outputs s and
then stops. We will now fix a Turing machine T and regard all Kolmogorov complexities
with regard to T . Some of the following equations will only hold up to an additive
constant (which is not dependent on the input arguments of the K and I, but only
depend on T ). This will be denoted by "+

=". With this we can now define the mutual
information I(s : t) of s and t:

I(s : t) := K(s)−K(s|t∗)

Note that we have conditioned over t∗ instead of over t, since t∗ is more valuable –after
all t∗ contains all information of t, but t does not necessarily contain all information
of t∗. According to Peters et al. (2017), K(s|t∗) shows closer analogies to the Shannon
Entropy than K(s|t).

If we now identify probability distributions PC and PE|C by their density functions pC
and pE|C , we can interpret K(PC) and K(PE|C) as the minimal length of a program that
encodes the functions pC and pC|E , respectively. Now we can formalize the statement of
independence of cause and mechanism with respect to algorithmic independence.

Principle 2 (Algorithmically independent conditionals, Principle 4.13 from Peters et al.
(2017)). PC and PE|C are algorithmically independent, that is,

I(PC : PE|C)
+
= 0

or equivalently,
K(PC,E)

+
= K(PC) +K(PE|C).

Since the Kolmogorov complexity is not computable and these equations only hold up to
a constant, these equations and therefore the principle itself is hard to check.

3.2.3. Information Geometric Independence of Cause and Mechanism

Another idea of formalizing independence of cause and mechanism is given in Peters
et al. (2017) as a correlational statement between the distribution of the cause and the
mechanism.

Definition 15 (IGCI model, Definition 4.9 from Peters et al. (2017)). Here PXY is said
to satisfy an IGCI model from X to Y if the following conditions hold: Y = f(X) for
some diffeomorphism f of [0, 1] that is strictly monotonic and satisfies f(0) = 0 and
f(1) = 1. Moreover, PX has the strictly positive continuous density pX , such that the
following “independence condition” holds:

Cov[log f ′, pX ] = 0,
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3. Causality

Figure 3.1.: (Figure 4.4 from Peters et al. (2017)) Visualization of the idea of the IGCI
model: Peaks of pY tend to occur in regions where f has small slope and
f−1 has large slope (provided that f has been chosen independently of pX .
Thus pY contains information about f−1

where logf ′ and pX are viewed as random variables on the probability space [0, 1] endowed
with the uniform distribution.

The statement Cov[log f ′, pX ] can be rewritten as CovZ∼Uni([0,1])[log f ′(Z), pX(Z)]. The
idea behind this model is that if the distribution of the cause is approximately uniform
and f ′ is approximately constant, then their variation away from the uniform distribution
or the constant function, respectively, should be independent from each other, i.e. their
covariance should be 0. However, if an effect Y is calculated by the cause as Y := f(X),
the corresponding covariance CovZ∼Uni([0,1])[log g′(Z), pY (Z)] should be greater than 0,
where g = f−1, as will be stated in Theorem 6 . Figure 3.2.3 is an illustration from Peters
et al. (2017) that shows an example of the distributions of X and Y and a mechanism
for this model.

Theorem 6 (Identifiability of IGCI model, Theorem 4.10 from Peters et al. (2017)).
Assume the distribution PX,Y admits an IGCI model from X to Y . Then the inverse
function f−1 satisfies

Cov[log f−1
′
, pY ] ≥ 0

with equality if and only if f is the identity.

In Janzing and Schölkopf (2015) the same statement is made with CovZ∼Uni([0,1])[f
′(Z), pX(Z)]

instead of CovZ∼Uni([0,1])[log f ′(Z), pX(Z)]. Later, we will need to formulate a similar
covariance statement in cases where the derivative is not defined and the original IGCI
model is therefore not applicable. We see the fact, that several versions of this statement
are used in the literature as motivation to explore the general idea rather than using this
specific formulation.
An attempt to give a more formal reasoning for this kind of model is given in Janzing
et al. (2012). There, the authors justify this model by a particular kind of generating
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process, where either f or some variation of f (e.g. f ′ or log f ′) is a piecewise con-
stant function, with the value for each interval sampled independently from the same
distribution. They then observe that∫

h(x)P (x)dx−
∫
h(x)U(x)dx

=

∫
h(x)U(x)

P (x)

U(x)
dx−

∫
h(x)U(x)dx

∫
U(x)

P (x)

U(x)
dx

= CovX∼U [h(X),
U(X)

P (X)
],

where U(X) is some reference distribution3 for P . They then show that this expression
is small, if we assume there is a generating process for h as described above.

Lemma 1 (Lemma 1 from Janzing et al. (2012)). Let X,Y be real-valued. Let rj > 0 with
j ∈ Z be random numbers i.i.d drawn from a distribution Q(r) with standard deviation
σr. We then define a piecewise constant function h via h(x) := rj for X ∈ [j, j + 1). We
then have for every c > 0 :

|
∫
h(x)P (x)dx−

∫
h(x)U(x)dx| ≤ cσr

√√√√∑
j

(∫ j+1

j
P (x)− U(x)dx

)2

with probability 1− 1
c2

or higher.

This implies that if Uni([0, 1]) is a good reference distribution for PX and log f ′ (or
respectively, f ′) was generated as described above, CovZ∼Uni([0,1])[log f ′(Z), pX(Z)] (or
CovZ∼Uni([0,1])[log f ′(Z), pX(Z)] ,respectively) is small with high probability in terms of
the generation of log f ′ (or f ′ respectively).
Certainly most monotone causal process between [0, 1] will not follow this construction.
For example, it could be the case that higher values for x also lead to higher values for
f ′(x), as would be the case for the family of quadratic functions with positive leading
coefficient. In this case one cannot assume f ′ to be created by a piecewise constant
function whose values are i.i.d sampled from some distribution. First of all, quadratic
functions are not piecewise constant, nor is their derivative or log derivative. But even
if we assume that for every quadratic function f there is some fapprox serving as a good
approximation for f , such that either f ′approx or log f ′approx are piecewise constant, the
values f ′approx(x) = rj (or respectively f ′approx = rj ) for intervals [ jn ,

j+1
n ) would not be

independent of each other. Furthermore, they would not come from the same distribution,
since rj would be higher for higher j. It can, however still be argued that the covariance
statement in the causal direction is likely smaller than in the anti-causal direction.
We might want to keep this generating process in mind, whenever we use the IGCI model
as a criterion for causality or formulate our own criterion based on the IGCI model, since
a different generating process would lead to a different covariance statement.

3A reference distribution can be thought of as a distribution that takes into account our prior knowledge
of the problem. The later argument will use the fact that they believe

∫
|P (x)−U(x)|dx to be small.
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Usually, in classification the assumption is that data from which we learn (i.e. training
data) and data on which the algorithm should perform (i.e. test data) are i.i.d from
the same distribution P and that the labeling function f∗ is the same for both training
and test data. This assumption is often violated in reality, since the data sets might
be generated under different conditions. In image recognition for example we could get
different marginals for data sets if the camera settings used differs between data sets,
while we might still have the same labeling rule for both data sets independent of that
change in settings.
In domain adaptation we will therefore not make this assumption. Instead, we will
assume that the training data is identically and independently distributed according
to some source distribution PS over X × Y, while the test data is i.i.d. according to
some target distribution PT over X × Y. Furthermore, let DS and DT be the marginal
distributions on X for PS and PT respectively. Furthermore, we will refer to the source
labeling function as f∗S and to the target labeling function as f∗T .
In this chapter we will investigate which assumptions yield learnability guarantees in the
domain adaptation setting.

First, we will give a formal definition of a Domain Adaptation (DA) learner and of
Domain Adaptation (DA) learnability. We will then introduce some properties, like
covariate shift and (small) H-divergence that serve as common assumptions in domain
adaptation scenarios. We will then state a positive result of DA-learnablity, that was
given in Ben-David et al. (2010a), but only works for a very restricted set of assumptions.
We will then provide an example of a way to adapt to a new domain by briefly introducing
the reweighting technique fromMansour et al. (2009). We will then provide theorems from
Ben-David et al. (2010b) and Ben-David and Urner (2012) that show the shortcomings
of this and other techniques, for cases were covariate shift is fulfilled, but other criteria,
like small H-divergence are not met. The definitions and results presented in this chapter
are primarily taken from Ben-David et al. (2010a, 2006, 2010b), Ben-David and Urner
(2012), Mansour et al. (2009) and Urner (2013).

We will formalize the domain adaptation scenario as described above, by providing a def-
inition for a Domain Adaptation (DA) learner and for Domain Adaptation (DA) learn-
ability. In the following, if nothing else is stated, we will examine binary classification
scenarios. We will look at the scenario, where our learner gets labeled data from one
source domain as well as unlabeled data from the target domain as input and outputs a
hypothesis that is supposed to perform well on the target domain.
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4. Domain Adaptation

Definition 16 (Domain Adaptation Learner, Definition 1 from Ben-David et al. (2010b)).
A domain adaptation (DA) learner is a function

A :
∞⋃
m=1

∞⋃
n=1

(X × {0, 1})m ×X n → {0, 1}X

The performance of a DA-learner will again be measured with respect to the target
distribution.

Definition 17 (Learnability of DA-learner, Definition 2 from Ben-David et al. (2010b)).
Let PS , PT be distributions over X ×{0, 1}, let DS ,DT their marginals on X , H a hypoth-
esis class, A a DA learner, ε, δ > 0 and m, n positive integers. The learner A will be said
to (ε, δ,m, n)-learn PT from PS relative to H, if when given access to a labeled sample
L of size m, generated i.i.d. by PS, and an unlabeled sample U of size n, generated i.i.d
by DT , with probability at least 1 − δ (over the choice of samples L and U), the learned
classifier does not exceed the PT -error of the best classifier in H by more than ε. In other
words,

Pr
L∼PmS ,U∼DnT

[LPT (A(L,U)) ≤ inf
h∈H
LPT (h) + ε] ≥ 1− δ

We will also say the learner A (ε, δ,m, n)-solves the DA-problem for a class W of pairs
(PS , PT ) for hypothesis class H, if A can (ε, δ,m, n)-learn PT from PS relative to H for
any pair (PS , PT ) ∈ W. Furthermore we will call a problem set W, DA-learnable if
there is a DA-learner A such that for every ε, δ > 0 there exist m,n ∈ N, such that A
(ε, δ,m, n)-solves the DA problem for W and H.

In the following, we will often use L and U to denote the labeled data from the source do-
main and the unlabeled data from the target domain, respectively. The features (without
the labels) of the source data will be denoted as LX .

4.1. Common Assumptions in Domain Adaptation

In this section we are going to introduce some assumptions that are often made in the
domain adaptation setting. Some of these assumptions give learnability guarantees, as we
will later see. First and foremost, all relevant assumptions we could make for a normal
supervised learning problem – e.g. VC-dimension, realizability, deterministic labeling
function – are still relevant (or become even more relevant) for domain adaptation. Ad-
ditionally, the relation between target and source domain and the hypothesis class will
be relevant.

One assumption for the labeling function that is often made in domain adaptation (Ben-
David et al. (2010a),Ben-David et al. (2006),Ben-David and Urner (2012),Rojas-Carulla
et al. (2018)) is covariate shift.
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Definition 18 (Covariate shift, from Ben-David et al. (2010a)). We say that the covariate
shift assumption holds if the conditional labeling functions are the same in target and
source domain, i.e.

f∗S = f∗T

Another assumption that is often made (Ben-David et al. (2010a),Ben-David et al.
(2006),Ben-David et al. (2010b)) concerns the existence of a hypothesis h∗ ∈ H that
has low risk in both source and target domain. For this so-called low-error joint predic-
tions assumption, we will denote the source risk of a hypothesis h with LPS (h) and the
target risk of a hypothesis with LPT
Definition 19 (Optimal joint hypothesis, from Ben-David et al. (2006)). The optimal
joint hypothesis is the hypothesis which minimizes the combined error

h∗ = arg min
h∈H
LPS (h) + LPT (h).

We denote the combined error of the optimal hypothesis for a hypothesis class H by

λH(PS , PT ) = LPS (h∗) + LPT (h∗).

Furthermore, guarantees for DA-learnability must obviously depend on how similar the
source and target distribution are to each other. Thus we need a formal way to measure
the similarity between two distributions. While there are several notions of distances
for probability distributions to choose from, one that is useful for obtaining worst-case
bounds, is the A-distance. 1

Definition 20 (A-distance, from Ben-David et al. (2006)). Let A ⊂ 2X and let P and
Q be two probability measures over the set X , such that every set A ∈ A is measurable
with respect to both distributions. Then the A-distance dA is defined as:

dA(P,Q) := 2 sup
A∈A
|P (A)−Q(A)|.

Since we are interested in worst-case scenarios, this choice of similarity-measure makes
sense: it only considers the largest occurring difference over all sets for some sets A ∈ X .
The remaining question is: what A to choose? An obvious choice of A would be all
measurable subsets of X . This choice results in the total variation distance between
distributions. However, this distance measure cannot be estimated from finite samples
for distributions over an uncountable domain. Furthermore we are only interested in
differences in distributions, that are relevant to our (with respect to distribution optimal)
choice of a hypothesis h ∈ H. By slight abuse of notation, we will now define the H-
divergence (cf. Ben-David et al. (2006)) for two distributions P and Q over some domain
X :

dH(P,Q) := 2 sup
A∈X :1(A)∈H

|P (A)−Q(A)|,

1Please note, that A does not denote a learner in the next two paragraphs, but a collection of subsets
of X .
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where 1(A) denotes the indicator function of the set A. For two functions a, b ∈ {0, 1}X
let a ⊕ b(x) := 1[a(x) 6= b(x)] for all x ∈ X denote the XOR function. We define the
symmetric difference hypothesis space as

H∆H := {h∆h′|h, h′ ∈ H}.

Since h(x) ∈ {0, 1} for all h ∈ H, we can interpret every function of H as and indicator
functions for some set A ∈ X . Now, we can define the H∆H-divergence analogous to
Ben-David et al. (2010a).

Definition 21 (H∆H-divergence, from Ben-David et al. (2010a)).

dH∆H(P,Q) := 2 sup
A⊂X :1(A)∈H∆H

|P (A)−Q(A)| = 2 sup
A,B⊂X :1(A),1(B)∈H

|P (A∆B)−Q(A∆B)|.

Using Lemma 1 from Ben-David et al. (2010a), we can estimate dH∆H(P,Q) empirically
using finite samples from both distributions. For this let U and U ′ be samples from D
and D′, respectively. We define the empirical H-divergence of U and U ′ as

d̂H∆H(U ,U ′) := 2 sup
A⊂X ,1∈H∆H

| |U ∩A|
|U|

− |U
′ ∩A|
|U ′|

|.

Building on this definition, we can now introduce Lemma 1 from Ben-David et al.
(2010a).

Lemma 2 (Lemma 1 from Ben-David et al. (2010a)). Let H be a [binary] hypothesis
space on X with VC dimension d. If U and U ′ are samples of size m from D and D′
respectively and d̂H(U ,U ′) is the empirical H-divergence between samples, then for any
δ ∈ (0, 1), with probability at least 1− δ,

dH(D,D′) ≤ d̂H(U ,U ′) + 4

√
d log(2m) + log(2

δ )

m
.

To estimate the H∆H-divergence we need the VC-dimension of H∆H. It is often stated
(Ben-David et al. (2006),Mansour et al. (2009),citeDAhard), that VC(H∆H) ≤ VC(H).
However, we were not able to find a valid proof of this statement in the literature. While
this inequality might still hold, we will only use the slightly worse bound of VC(H∆H) ≤
4VC(H) log(4VC(H)) and will refer the reader to the appendix for a proof and further
discussion.

Having a low H∆H-divergence between source and target distributions is another com-
mon assumption in domain adaptation.2

A more generalized version of this similarity measure, which works for general loss-
functions and general label spaces Y, is the discrepancy distance, as introduced in Man-
sour et al. (2009).

2For the rest of this thesis the H∆H-divergence will be the only A-distance we will use. From this
point on A will therefore only refer to learners.
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Definition 22 (Discrepancy Distance, analogous to Definition 4 from Mansour et al.
(2009)). Let H : X → Y be a hypothesis class and let l : Y × Y → R+ define a loss
function over Y. The discrepancy distance discl between two distributions Q1 and Q2

over X is defined by

discl(Q1, Q2) = max
h,h′∈H

|LQ1(h′, h)− LQ2(h′, h)|

Up to the difference between taking the supremum or the maximum and a factor of 2, this
definition coincides with the H∆H-divergence for binary classification under the 0-1-loss.

Another notion of similarity between distributions, that has been used in the literature,
is the so-called weight-ratio assumption. This definition is motivated by the question,
how well a learner can adapt to a target domain, that is a subset of the source domain.

Definition 23 (Weight-ratio, Definition 2 from Ben-David and Urner (2012)). Let B ⊂
2X be a collection of subsets of the domain X measurable with respect to both PS and
PT . We define the weight ratio of the source distribution and the target distribution with
respect to B as

CB(PS , PT ) = inf
b∈B(X ),PT (b)6=0

PS(b)

PT (b)
.

We denote the weight ratio with respect to the collection of all sets that are PS- and
PT -measurable by C(PS , PT ).

Note that this definition is not dependent on the hypothesis class used and is the first
assumption we have used that is not symmetric in PS and PT . In practice, we might find
situations where we could adapt from the domain distribution PS to PT , but not vice
versa, e.g., if DT is distributed over a subset of the source support supp(DS). Bounds
that only consider criteria that are symmetric in PS and PT will fail to give guarantees
in these scenarios. In contrast, the weight ratio assumption might give an insight into
these situations.

4.2. Existing results

4.2.1. Upper bounds for domain adaptation

One of the first formal guarantees for domain adaptation was given in Ben-David et al.
(2006), providing a bound for the target error of a classifier learned on the source domain
in terms of its H∆H-distance and its joint hypothesis error :
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Theorem 7 (Theorem 2 from Ben-David et al. (2010a)). Let H ⊂ {0, 1}X be a hypothesis
space with finite VC-dimension d. If US ,UT are unlabeled samples of size m each, drawn
from DS ,DT respectively, then for any δ ∈ (0, 1) with probability at least 1− δ (over the
choice of samples), for every h ∈ H we obtain:

LPT (h) ≤ LPS (h) +
1

2
d̂H∆H(US ,UT ) + 4

√
2d log(m) + log( δ2)

m
+ λH(PT , PS)

By this theorem, a problem is DA-learnable if the following two assumptions hold.

(1) dH∆H(DT ,DS) = 0 and

(2) λH(PT , PS) = 0.

But this case is still quite restricted, since we are only looking at distributions DS and
DT that can be considered equal with respect to H. However, note that this guarantee
also holds for the case, where we do not have covariate shift.

Another upper bound for domain adaptation was provided in Ben-David et al. (2012).
The authors make assumptions about the weight ratio instead of an assumption about
H-divergence. Note that for this result, covariate shift is indeed needed.

Observation 1 ((Observation 5 from Ben-David et al. (2012))). Let X be a domain
and let PS and PT be a source and a target distribution over X × {0, 1} satisfying
the covariate shift assumption, with C{{x}:x∈X}(DS ,DT ) > 0. Then we have LPT (h) ≤

1
C{{x}:x∈X}

LPS (h) for all h : X → {0, 1}.

In both of these upper bounds, we do not have to actually “adapt” for the new domain,
since we only rely on the performance guarantee we get for the classifier trained on
the source. The only use we had for unlabeled target data so far was to estimate the
H-divergence for the bound from Ben-David et al. (2006).

4.2.2. Reweighting technique

Before exploring further learnability results for domain adaptation, we will briefly men-
tion one common technique from Mansour et al. (2009), one that actually takes into
account the unlabeled data from the source domain.
The idea behind this technique is to assign weights to the source data, in such a way
that the reweighted source distribution and the target distribution have low discrepancy
distance.
Let D̂S and D̂T be the empirical source and target distribution, respectively. The
aim now is to construct a D̂′S such that disc(D̂′S , D̂T ) is small under the constraint
supp(D̂′S) ⊂ supp(D̂S). It is argued in Mansour et al. (2009) that for binary classifica-
tion this results in the optimization problem
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arg min
D̂′S

max
1(A)∈H∆H

|D̂′S(A)− D̂T (A)|

subject to ∀x ∈ LX , D̂′S(x) ≥ 0 ∧
∑
x∈LX

D̂′S(x) = 1

where LX denotes the projections of the labeled source data L to the domain X . This,
the authors argue, they argue can be rewritten as

min
D̂′S

δ

subject to ∀1A ∈ H∆H, D̂′S(A)− D̂T (A) ≤ δ
∀1A ∈ H∆H, D̂T (A)− D̂′S(A) ≤ δ

∀x ∈ LX , D̂′S(x) ≥ 0 ∧
∑
x∈LX

D̂′S(x) = 1.

They go on to argue that the number of constraints is proportional to |H∆H|. However
for two A,A′ ⊂ X with 1A,1A′ ∈ H∆H, two constraints coincide if they include the same
points of LX and U . Therefore, if V C(H∆H) is finite, then the number of constraints can
be reduced as well. To be more precise, if we havem samples from D̂S and n samples from
D̂T , the number of constraints is bounded by (n+m)V C(H∆H) ≤ (n+m)4V C(H) log(4V C(H))

(see Appendix).
The paper goes on to argue that in cases where we can test efficiently whether there is
a consistent hypothesis in H, we can generate all consistent labelings of the same points
by H in O((m+ n)V C(H∆H)) time.

4.2.3. Impossibility results

Covariate shift is an assumption that is often easily justifiable. For example in image
recognition the labeling rules between two data sets will rarely change, but the underlying
marginal distribution of two data sets are often different: they might have different light
conditions or certain motives might be present more often in one data set than in the
other. Therefore it is a question of interest, whether or not this assumption leads to new
domain adaptation guarantees. As shown in Ben-David et al. (2010b), however, covariate
shift alone does not suffice to make any of the previously used assumptions – i.e., low
H∆H-distance and low joint prediction error – obsolete.

Theorem 8 (Necessity of small dH∆H(DT ,DS), Theorem 1 from Ben-David et al.
(2010b)). Let X be some domain set, and H a class of functions over X . Assume that
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for some A ⊂ X , {h−1(1) ∩ A : h ∈ H} contains more than two [non-empty]3 sets and
is linearly ordered by inclusion. Then the conditions "covariate shift plus small λH"
do not suffice for DA-learnability. In particular, for every ε > 0 there exist probabil-
ity distributions PS over X × {0, 1}, DT over X such that for every domain adaptation
learner A with outputs in H, and all integers m,n > 0, there exists a labeling function
f : X → {0, 1} such that

1. λH(PT , PS) ≤ ε,

2. PT and PS satisfy the covariate shift assumption,

3. Pr
L∼PSm,U∼DnT

[LPT (A(L,U)) ≥ 1
2 ] ≥ 1

2 .

The following proof is different from the proof provided in Ben-David et al. (2010b).
After the proof there will be a short discussion and comparison of the two proofs.

Proof. Since there is a set A ⊂ X such that the set {h−1(1) ∩ A|h ∈ H} is linearly
ordered by inclusion and has at least two elements, we can choose h1, h2 ∈ H, such that
∅ ( h−1

1 (1) ∩ A ( h−1
2 (1) ∩ A. Let PS be uniformly distributed4 over h−1

1 (1) ∩ A× {1}.
Furthermore, let PT1 be uniformly distributed over ((h−1

2 (1) ∩ A) \ (h−1
1 (1) ∩ A)) × {0}

and PT2 be uniformly distributed over ((h−1
2 (1) ∩ A) \ (h−1

1 (1) ∩ A)) × {1}. Note that
DT1 = DT2 =: DT . Furthermore note that the labeling function f1 = h1 is consistent
with both PS and PT2 and that the labeling function f2 = h2 is consistent with both PS
and PT2 . Therefore (1) and (2) are fulfilled by the labeling functions f1 and f2 with their
respective source and target distributions. Also note that dH∆H(DS ,DT ) = 1. Since
DT1 = DT2 , the learning problems (PS , PT1 ,H) and (PS , PT1 ,H) are indistinguishable
from a pair (L,U) of labeled data L from PS and unlabeled data U from DT . Now let

3The assumption that there are at least two non-empty sets in A ⊂ X , {h−1(1) ∩ A : h ∈ H} is an
addition to the original theorem in Ben-David et al. (2010b). However, this addition is necessary,
since otherwise, we could look at the function class H0,1 := {h0, h1 : X → {0, 1}} with h0(x) = 0
and h1(x) = 1 for all x ∈ X . In this case, dH∆H(DS ,DT ) = 0 is implied for all distributions PT , PS
on X . As seen in Theorem 7, this combined with the additional assumption λH(PT , PS) ≤ ε implies
LPT (h) ≤ ε + LPS (h) for every h ∈ H0,1. For the optimal joint hypothesis h∗ this means h∗ that
LPT (h∗) ≤ 2ε. Since H0,1 = {|h∗, |1−h∗||}, λ(PS , PT )H ≤ ε implies h∗ is the only optimal hypothesis
for the source domain. VC(H0,1)=1 then implies that any ERM-rule A on the source domain, with
sufficiently large sample set L, will output h∗ with high probability. Therefore, for every ε′ > ε.

4In cases where the set A is not compact, one could argue that there is no uniform distribution over
h−1

1 (1)∩A×{1}. However in that case, we can define a compact subset A′ ⊂ A, such that h−1
1 (1)∩A′ (

h−1
2 (1) ∩ A′. In this case it is possible to define a uniform distribution over A′ (and thus over all

measurable subsets of A′). In the following we will therefore assume A to be compact.
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A be any DA-learner on H. If Pr
L∼PSm,U∼DnT

[LPT1
(A(L,U)) ≥ 1

2 ] < 1
2 , then

Pr
L∼PSm,U∼DnT

[LPT2
(A(L,U)) ≥ 1

2
] =

= Pr
L∼PSm,U∼DnT

[1− LPT1
(A(L,U)) ≥ 1

2
] =

= Pr
L∼PSm,U∼DnT

[LPT1
(A(L,U)) ≤ 1

2
] ≥ 1

2
.

Any learner A will therefore either fail to solve the DA-problem (PS , PT1 ,H) or fail to
solve (PS , PT2 ,H).

Note that in this proof, the distributions PT1 , PT2 and PS were all realizable in H. In the
original proof from the paper, there was no realizability constraint, however DS and DT
were constructed in such a way that dH∆H(DS ,DT ) = 1− ε. In this way their construc-
tion allowed the use of the reweighting technique and could therefore demonstrate the
method’s short-comings. Hypothesis classes H that fulfill the requirements of this theo-
rem include threshold functions and half-spaces. Furthermore, note that the assumption
that there is a subset A ⊂ X such that {h−1(1) ∩ A : h ∈ H} is linearly ordered by
inclusion and contains more than two sets, is sufficient, but not necessary for the proof
to work. It is already sufficient that there exists a subset H′ ⊂ H and A ⊂ X such that
{h−1(1) ∩ A : h ∈ H′} is linearly ordered by inclusion and contains at least two sets.
Indeed this is the case for every function class with a VC-dimension of at least 2 or more
precisely for every hypothesis class, which containing at least 3 hypotheses.5

Theorem 9 (Necessity of small λH(DT ,DS) (Theorem 2 from Ben-David et al. (2010b))).
Let X be some domain set, and H be a class of functions over X whose VC dimension is
much smaller than |X |(in particular, any H with a finite VC dimension over an infinite
X will do). Then the conditions "covariate shift plus small dH∆H(DT ,DS)" do not suffice
for DA-learnability. In particular, for every ε > 0 there exist probability distributions PS
over X × {0, 1}, DT over X such that for every DA learner A with outputs in H, and
for all integers m,n > 0, there exists a labeling function f : X → {0, 1} such that

1. dH∆H(DT ,DS) ≤ ε,

2. The covariate shift assumption holds,

3. Pr
L∼PmS ,U∼DnT

[LPT (A(L,U)) ≥ 1
2 ] ≥ 1

2 .

5To be more precise, it might be the case that if a hypothesis class H contains more than three
hypotheses, but there is still noA ⊂ X , such that {h−1(1) ∩A : h ∈ H} is not linearly ordered. This
is indeed the case for the class of singletons. However, in these cases there exists a set H′ ⊂ H and
A ⊂ X , such that {h−1(0)∩A : h ∈ H′} is linearly ordered by inclusion. In these cases we can make
the same proof as before by exchanging the roles of the labels 0 and 1.
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The proof of this lemma will follow the sketch of proof given in Ben-David et al. (2010b).
But first let us introduce a lemma from Urner (2013).

Lemma 3 (Lemma 47 from Urner (2013)). Let X be a finite domain of size m. For
every 0 < β < 1, with probability exceeding β, an i.i.d. sample of size at most n ≤
min{

√
ln(2)m,

√
ln( 1

β )m} uniformly drawn over X contains no repeated elements.

Furthermore we will need the concept of ε-approximations. A class B of subsets of X is
said to have VC-dimension d, if the class HB = {h : X → {0, 1}|h = 1B for some B ∈ B}
of indicator functions of elements of B has VC-dimension d. For a sample S, we denote
the empirical estimate of the weight of a set B ∈ B by Ŝ(B) = |S∩B|

|S| .

Definition 24 (Definition 29 from Urner (2013)). Let X be some domain, B ⊂ 2X a
collection of subsets of X and P a distribution over X . An ε-approximation for B with
respect to P is a finite subset S ⊂ X with

|Ŝ(B)− P (B)| ≤ ε

for all sets B ∈ B. In this case, we will also call S an ε-approximation for the corre-
sponding hypothesis class HB with respect to P .

Proof of Theorem 9. The idea behind this proof is to choose PS and PT in a way that
dH∆H(DS ,DT ) < ε, but such that the supports DS and DT are disjoint. If this is the
case, we can construct a labeling function f that is both source- and target realizable,
but where the joint prediction error is still large and such that DA-learnability is not
possible.
But first we have to show that this construction of PS and PT is possible. Note that if
there are finite, disjoint sets S1, S2 such that

|Ŝ1(B)− Ŝ2(B)| ≤ ε

for all B with 1B ∈ H∆H, defining DS as the uniform distribution over S1 and defining
DT as the uniform distribution over S2 will fulfill dH∆H(DS ,DT ) < ε. Now let P be
some uniform distribution over a compact subset X ′ ⊂ X . According to Urner (2013)
two i.i.d samples S1 and S2 of size

16

(2ε)2

(
V C (H∆H) ln

(
16V C(H∆H)

(2ε)2

)
+ ln

(
4

δ′

))

each are both ε
2 -approximations of H∆H with respect to P with probability at least

(1− δ), where δ = 2δ′. This implies

|Ŝ1(B)− Ŝ2(B)| ≤ |Ŝ1(B)− P (B)|+ |Ŝ2(B)− P (B)| ≤ ε

2
+
ε

2
≤ ε
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with probability (1− δ). Furthermore, Lemma (47 from Urner (2013)) tells us that both
samples will be disjoint with probability at least 1

2 , if

32

(2ε)2

(
V C (H∆H) ln

(
16V C(H∆H)

(2ε)2

)
+ ln

(
4

δ

))
≤
√
|X ′| ln(2)

Therefore if X ′ is infinite or if X ′ is finite with

1

ln(2)

√
32

(2ε)2

(
V C (H∆H) ln

(
16V C(H∆H)

(2ε)2

)
+ ln

(
4

δ

))
) ≤ |X ′|

there exist DS and DT such that their support is disjoint and dH∆H(DS ,DT ) ≤ ε.
Now let h ∈ H. We choose PS in a way that the labeling is consistent with h, i.e.,
λPS (h) = 0. Now let us define two labeling functions f1 and f2. Let f1(x) = h(x)
for all x ∈ X . Furthermore let f2(x) = h(x) for all x ∈ X and x ∈ supp(DS) and
f2(x) = |1 − h(x)| for all x ∈ supp(DT ). Let PT1 be the target distribution consistent
with f1 and PT2 be the target distribution consistent with f2. Any learnerA that succeeds
on the DA-problem (PS , PT1) will fail on (PS , PT2) and vice versa.

Note that this theorem does not make any assumptions about source and target real-
izability. There are cases where we have source and target realizability, but still get
λH(PT , PS) ≥ 1 − ε. For example, this is the case if there exists an h ∈ H, such that
h′ : x → |h(x) − 1| is in H, source and target supports are disjoint and the source is
labeled by h, while the target is labeled by h′. In the case where H = {h, h′}, we ad-
ditionally get dH∆H(DS ,DT ) = 0 for every pair of distributions (DS ,DT ). Thus, the
theorem also holds for some cases where we have source and target realizability.
However this is not the case for certain function classes, where source and target realiz-
ability combined with small dH∆H(PS , PT ) implies small λH(DT ,DS).

Another set of assumptions was explored in Ben-David and Urner (2012). In this case,
the target domain was assumed to be a subset of the source domain, with a weight-ratio of
1
2 . We furthermore have covariate shift and a small H∆H-distance in this scenario, while
the joint prediction error is not bounded. It was shown that this set of assumptions does
not suffice to give a domain-adaptation bound by giving the following counter example:

In the following let H(1,0) := {h0, h1 ∈ {0, 1}X }, where h0(x) = 0 and h1(x) = 1 for all
x ∈ X .

While a version of this bound is first given in Ben-David and Urner (2012), we will now
provide a slightly better version from Urner (2013).

Theorem 10 (Theorem 41 from Urner (2013)). For every finite domain X , for every ε
and δ with ε+δ < 1

2 , no algorithm can (ε, δ, s, t)- solve the DA problem for the classWn of
pairs (PS , PT ) satisfying the covariate shift with C(DS ,DT ) ≥ 1

2 , dH1,0∆H1,0(DS ,DT ) = 0
and optPT (H1,0) = 0 if

s+ t ≤ min

{√
ln(2)|X |,

√
ln

(
1

2(ε+ δ)

)
|X |

}
− 1.
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We will now give a description of the proof of this theorem as it is done in Urner (2013).
For the proof of this theorem the problem is reduced to the so-called Left/Right Problem
(first introduced in Kelly et al. (2010)), which takes as input three finite samples L,R and
M over the finite domain X . It is assumed that L is an i.i.d. sample of some distribution
P1 over X , R is an i.i.d. sample of some distribution P2 over X andM is an i.i.d. sample
of either P1 or P2. The Left/Right Problem is to find out whether M is generated by P1

or by P2. More formally the solvability of this problem can be defined as follows:

Definition 25 (Left/Right problem solvability (Definition 43 from Urner (2013))). We
say that a (randomized) algorithm (δ, l, r,m)- solves the Left/Right problem with respect
to a class W of triplet (P1, P2, P3) of distributions (where P3 = P1 or P3 = P2), if given
sample L i.i.d. form P1, R i.i.d. from P2 and M i.i.d. from P3 of sizes l, r and m
respectively, it correctly decides whether P3 = P1 or P3 = P2 with probability at least
1− δ.

For the construction of the learning problem that gives rise to the lower bound given in
Theorem 10, the particular problem class Wuni

n : {(UA, UB, UC)|A ∪B = {1, . . . , n}, A ∩
B = ∅, |A| = |B|, and C = A or C = B} of Left/Right problems, where P1 and P2 are
uniform distributions over disjoint sets A and B, which partition the set {1, . . . , n}, is
introduced. Since no additional structure for A and B is given, the problem of (δ, l, r,m)-
solvability of Wuni

n can be reduced to the question of how likely it is that a sample of M
of size m of either P1 or P2 coincides in at least one point with a sample L from P1 of
size l or a sample R from P2 of size r respectively. Using Lemma 47 from Urner (2013),
we can give the following lower bound for this problem:

Lemma 4 (Lemma 44 from Urner (2013)). For any given example sizes l for L, r for R
and m for M and any 0 < γ < 1

2 , if k = max{l, r}+m, then for

n > max

{
k2

ln(2)
,

k2

ln( 1
2γ )

}

no algorithm has probability of success greater than 1− γ over the class Wuni
n .

Let us now consider the class of DA-problems Wn of pairs (PS , PT ) that are constructed
in the following way. Let the corresponding target marginal distribution DT be uniform
over some subset T of X , with |U | = |X | and the corresponding source marginal dis-
tribution DS be uniform over X . Furthermore, let there be a labeling function that is
consistent with both PS and PT that labels all elements of T with “1” and all elements of
X \T with “0” (or vice versa). An illustration of this problem set can be seen in Figure 4.1.

It is easy to see that we have optPT (H1,0) = 0 in this case. Furthermore we also get
C(PS , PT ) = 1

2 and dH1,0∆H1,0(PT , PS) = 0. If we now regard all data from the source
distribution with label “1” to be generated by some uniform distribution UA (with either
A = T or A = X \ T ) and all data with label “0” to be generated by some uniform
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label

elements of X

0

1

T

X \ T

Figure 4.1.: An illustration of one pair (PS , PT ) ∈ Wn. The elements of X are labeled
"0" for the target support (marked red) and "1" everywhere else.

distribution UB (with B = X \A), deciding on the correct labeling function h ∈ H1,0 for
the target domain is equivalent to the problem of deciding whether the (unlabeled) target
data is generated by UA or by UB. Or to put it more formally: With this construction
we can finally reduce the solvability of the Left/Right problem Wuni

n to the solvability of
the DA problem WDA

n :

Lemma 5 (Lemma 48 from Urner (2013)). The Left/Right problem reduces to domain
adaptation. More precisely, given a number n and an algorithm A that, given the promise
that the target task is realizable by the class H1,0, can (ε, δ, s, t)-solve DA for a class W
that includesWn, we can construct an algorithm that (ε+δ, s, s, t+1)-solves the Left/Right
problem on Wuni

n .

This means that we can derive a lower bound for the DA problem Wn from the lower
bound for the Left/Right problem introduced in Lemma 25. This results in Theo-
rem 10.
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5. Domain Adaptation under Causal
Assumptions

We will now look at what kind of assumptions for domain adaptation result from causal
models, as introduced in Chapter 3. We will mainly focus on the causal direction, i.e.,
the feature vectors cause the labels (and not vice versa). We will first look at SCMs
and their implications for domain adaptation. We will then go on to look at several
formalizations of the Principle of Independence of Cause and Mechanism. In particular,
we will consider the IGCI model and attempt to adapt it for binary classification. We will
show that for all of these attempts, we are still able to construct lower bounds similar to
the one given in Ben-David and Urner (2012) for the sample complexity needed to solve
the DA problem. Since these bounds are all dependent on the cardinality of the feature
domain X , they translate to impossibility results for scenarios with infinite domain spaces
X .

5.1. Domain Adaptation assumptions resulting from
Structural Causal Models

If we assume an SCM as underlying model for our data, the particulars of this model can
give us an insight on how this distribution shift happens. In practice, the assumption
that even if a shift in distribution happens between source and target domains, both
models allow for the same SCM structure. A distribution change would therefore most
likely happen, due to the change of one marginal. We will assume a simple causal model
to distinguish between several cases of distribution shifts. Let X be the only cause Y ,
i.e., the following SCM holds:

NX

��

NY

��
X

fY // Y

where NX , X and Y are random variables, X denotes the features and Y the labels we
would like to learn. In this scenario the most likely distribution shift would happen if
the distribution of X changes from source to target. This implies that the mechanism
fY would either

1. be the same for both source and target, or
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2. change independently of the shift between PS and PT .

The first case, where only the distribution ofX changes, implies covariate shift, as defined
before. However, we have also seen in the previous section that Ben-David et al. (2010b)
and Ben-David and Urner (2012) shows that covariate shift alone is not sufficient to give
guarantees for domain adaptation in the general case. The second case is less clearly
defined as covariate shift, since it is unclear how this independent change would look.
However, we can assume that the covariate shift is a special case of the second case. It
therefore seems unlikely that it would yield a meaningful criterion for domain adaptation.

Another kind of distribution change could happen, due to a change in NY . In the causal
scenario it is obvious, that unlabeled data of X will not help to adapt for this change.
We therefore do not see how this kind of distribution shift could be accounted for by DA
algorithms.

Aside from covariate shift and its generalization, we do not see any further insight SCMs
give us into the distribution change in the causal direction.

But the use of SCMs might not be limited to an insight into the distribution shift. They
might also give us other criteria that hold for source and target domain.

One possible use of a SCM might be, that it gives us a restricted class of possible mech-
anisms. If we can assume this model to be true, this might lead to a hypothesis class H
with finite VC-dimension for which the realizability assumption holds. However, as we
have seen the impossibility results of Ben-David et al. (2010b) given here by Theorem 8
and Theorem 9 still hold if we have source and target realizability.

Without accounting for interventions, the only other assumption we get from SCMs is
the statistical independence of NY and X within one domain. This might also restrict
our class of possible labeling functions if we allow for a restricted noise model like ANMs.
However, for deterministic labeling functions – as were used for the results of Ben-David
et al. (2010b) and Ben-David and Urner (2012) – this statistical independence always
holds (since we can model the labeling function with an SCM with P (NY = 0) = 1).
Any criterion that results from this independence therefore already holds for the coun-
terexamples from Ben-David et al. (2010b) and Ben-David and Urner (2012).

Therefore, we conclude that in the causal direction SCMs do not give us additional
assumptions that would help for domain adaptation in the scenarios discussed in Ben-
David and Urner (2012) and Ben-David et al. (2010b).

5.2. Independence of Cause and Mechanism

In this section we will look at scenarios that are inspired by the Principle of Independence
of Cause and Mechanism and its implications for domain adaptation. In particular, we
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will look at the lower bound given in Ben-David and Urner (2012) that we introduced in
Theorem 10 of Chapter 4.

We hope that an additional causal assumption is sufficient to obtain an upper bound on
the sample complexity in DA-learning. If this is the case, then this additional assumption
cannot be satisfied in the counterexample given above. Therefore this counterexample is
a good example to test candidates for causal assumptions we could make when hoping
to facilitate domain adaptation.

5.2.1. Information geometric criterion

The first assumption we look at is inspired by the IGCI model as introduced in Chap-
ter 3. Here it was assumed that there is a cause C and an effect E, both of which are
random variables distributed in the interval [0, 1] and which have probability density
functions pC and pE respectively. Furthermore there exists a function g : [0, 1] → [0, 1],
determining the effect from the cause, i.e. g(C) = E. In the information geometric model
of independence of cause and mechanism, it was furthermore assumed that g is a mono-
tonic diffeomorphism. The independence of mechanism is then formalized by setting the
covariance between some function of g(X) and pC(X) to 0, where X is a uniformly dis-
tributed random variable on [0, 1]. In particular the covariances Cov[g′(X), pC(X)] and
Cov[log(g′(X)), pC(X)] were considered to be 0 in Janzing and Schölkopf (2015). The
main argument behind these choices is that one can prove the identifiability of the causal
direction under these assumptions as we have seen in Theorem 6. However, since we are
in a binary classification scenario g′ is not well defined. Therefore we will need to change
the setting and hope that our new definition can still keep the parts that are important
for causality.

If the labeling function f is differentiable, one could look at the covariances Cov[f ′(X), pC(X)]
or Cov[log f ′(X), pC(X)]. However, since f maps to the probability of a feature vector x
being mapped to the label 1 and the mechanism function g in the IGCI model maps to
the true real-valued label, the mechanisms g and f are still different objects. Furthermore
we would like to introduce as few additional assumptions as possible to define causality,
since our aim is to find assumptions that imply DA-learnability and that are as general
as possible. Therefore we would like to avoid the assumption that f ′ is differentiable, if
possible, because this assumption introduces additional structure in our feature space.
In particular, we try to avoid introducing additional structure that by itself helps for DA
learnability. For example, we know that assuming the labeling function f to be Lipschitz
will resolve the hardness result given in Ben-David and Urner (2012).
For these reasons, we will use a different definition, one that captures – to the best of
our knowledge – the intuition behind the original IGCI-model. This definition has the
advantage of not needing more additional structure, but has – as a model of causality –
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the disadvantage of not being identifiable1. However, as mentioned in Chapter 3, Propo-
sition 1 implies that a causal direction does not necessarily lead to its identifiability.
Therefore, if we try to prove a general statement of the form “Features causing the label
implies learnability.", we cannot make identifiability a requirement, because then we will
not cover all causal scenarios. Moreover, if the additional assumptions that we need
to be able to distinguish between a causal and an anti-causal case are too strong, they
might imply learnability by themselves – without actually using the causal direction of
the setting.
As discussed when introducing the IGCI model, it is motivated by the fact that for a
particular kind of data generating process the covariance statement is small with high
probability in terms of the data generating process. In our examples, we will discuss
whether a similar data generating process would be likely. However, we try to avoid
making probability statements with respect to some data generating process (we likely
would not know in reality). The hope here is that if our IGCI criteria for causality hold,
then they imply DA learnability. We can then independently discuss how likely this
criterion holds in a causal setting. The first causal assumption we propose is designed
to fit the scenario in Ben-David and Urner (2012). It postulates an independence of the
labeling function f and the target distribution in the following sense:

Assumption 1 (First IGCI criterion for binary classification). Let X be a finite domain.
If we have a causal labeling X → Y , that is the features X cause the labels Y , then we have
the following relation between the labeling function f and the cause (target) distribution
pT :

CovZ∼Uni(X )[f(Z), pT (Z)] = 0

where Z is a random variable that is uniformly distributed over the source domain X .2

We will see that this assumption is indeed violated by the counterexample given in The-
orem 10. This violation is implied in this setting by the fact that the labeling function f
and the target distribution pT are related, due to the assumption of target realizability.
We will now show that the first IGCI criterion for binary classification is violated, by
the problem class given in Theorem 10. Remember that pS is uniformly distributed over
the (finite) set X and that pT is a uniform distribution over some (unknown) set T , with
|T | = |X|

2 . Furthermore the labeling function is given by either

f(x) =

{
0 , if x ∈ T
1 , if x ∈ X \ T

1It is a good question how we would define identifiability in binary classification. Most arguments
about identifiability detect an asymmetry between the cause and the effect in their joint distribution.
But in the case of binary classification, there is already an asymmetry between the feature space X
and the label space Y, since they are of different sizes in most cases (that is, if |X | > 2). Therefore
there will be an an inherent difference between functions f1 : X → Y and functions f2 : Y → X . This
difference does not depend on the causal direction.

2In the case of the counterexample from Ben-David and Urner (2012), this uniform distribution is also
the source distribution. Maybe it would in general be better to assume X to be distributed according
to the source distribution, but since it does not matter here, we will not discuss it here.
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or

f(x) =

{
1 , if x ∈ T
0 , if x ∈ X \ T

.

Let us also remember that the hypothesis class considered isH(1,0). The labeling function
is by construction either 0 in the whole target domain or it is 1 in the target domain. So
we have two cases to distinguish:
Case 1: The labeling function is 0 in the whole target domain:

Cov[f(Z), pT (Z)] =
∑
x∈X

1

|X |
· f(x) · pT (x)− (

∑
x∈X

1

|X |
· f(x))(

∑
x∈X

1

|X |
pT (x))

=0− |T |
|X |
· 1

|X |
= − 1

2|X |

Case 2: The labeling function is 1 in the whole target domain:

Cov[f(Z), pT (Z)] =
∑
x∈X

1

|X |
f(x) · pT (x)− (

∑
x∈X

1

|X |
· f(x))(

∑
x∈X

1

|X |
· pT (x))

=
1

|X |
− 1

|X |
· |T |
X

=
1

2|X |

In both cases we see that the covariance between the labeling function and the target
distribution is not 0 and there is a dependence between the two.

However we can slightly tweak the counterexample from Ben-David and Urner (2012)
for it to fulfill the proposed condition, while still providing the same lower bound3 for
DA-learnability. For this we will introduce a function class HC and a problem class
WC,n simultaneously, in such a way that HC has two elements hc and |1 − hc| and for
each problem (PS , PT ) ∈ WC,n such that covariate shift holds and the labeling function
f agrees with one element of HC on the target support T agrees and with the other
element on HC on the rest of X . For this function class and problem set, the following
theorem holds.

Theorem 11 (Lower bound with first IGCI causal assumption). For every finite domain
X , for every ε and δ with ε + δ < 1

2 , no algorithm can (ε, δ, s, t)-solve the DA problem
for the class WC,n of pairs (PS , PT ) satisfying the covariate shift with C(DS ,DT ) ≥ 1

2 ,
dHC∆HC (DS ,DT ) = 0, optPT (HC) = 0 and the first IGCI criterion for binary classifica-
tion, if

s+ t ≤ min

{√
ln(2)

|X |
2
,

√
ln

(
1

2(ε+ δ)

)
|X |
2

}
− 1.

First – in order for this to be a meaningful theorem – we need to show that the construc-
tion ofHC andWC,n is indeed possible. In the following we assume n = |X | to be divisible

3up to a factor of
√

1
2

47



5. Domain Adaptation under Causal Assumptions

label

elements of X

0

1
T

X \ T
C X \ C

Figure 5.1.: An illustration of a pair (PS , PT ) ∈ WC,n. The label of the target (marked
red) support is "0" in C and "1" in X \ C.

by 4. We can therefore partition X in the following way: X = Xa,t ∪ Xa,u ∪ Xb,t ∪ Xb,u,
with pairwise disjoint Xa,t,Xa,u,Xb,t,Xb,u and |Xa,t| = |Xa,u| = |Xb,t| = |Xb,u|. Let the
target domain be Xt = Xa,t ∪ Xb,t and the target distribution PT be uniform over XT .
Furthermore let Xa = Xa,t ∪ Xa,u and Xb = Xb,t ∪ Xb,u. Now let the labeling function f
be chosen in such a way that we have either f(a) = 0 and f(b) = 1 for every a ∈ Xa
and b ∈ Xb, or f(a) = 1 and f(b) = 0 for every a ∈ Xa and b ∈ Xb. In the following we
will now also refer to Xa,t ∪ Xb,u as C and to its complement Xa,u ∪ Xb,t as D. We can
now construct our hypothesis class HC = {hc, hd}, with hc chosen in such a way that
hc(x) = 1 for every x ∈ C = Xa,t ∪Xb,u and hc(x) = 0 for every x ∈ D = Xa,u ∪Xb,t and
hd(x) chosen in such a way that hd(x) = 0 for every x ∈ C = Xa,t ∪ Xb,u, and hd(x) = 1
for every x ∈ D = Xa,u ∪ Xb,t.
Now, we have constructedWC,n and HC properly and can continue to prove the theorem.
An illustration of WC,n can be seen in Figure 5.1.

Proof. First we need to show that all conditions of the theorem are fulfilled by HC and
WC,n. It is easy to see that we have target realizability for HC . Furthermore the VC-
dimension of HC is 1, since it only contains two functions. Since these two functions
disagree in every point, we have HC∆HC = {h0, h1}, where h0 is the function that is 0
everywhere and h1 is the function that is 1 everywhere. Thus we have the same H∆H
as in the previous example. Furthermore, we see that DS and DT are constructed in
the same way as in the previous counterexample. We therefore have the same H∆H-
divergence dH∆H(DS ,DT ) = 0 and the same weight ratio C(DS ,DT ) = 1

2 .

Now let us examine whether or not we have independence of mechanism according to
our previously defined criterion: Let us first look at the case where f agrees with hd on
the target domain:

Cov[f(X), pT (X)] =
∑
x∈X

f(x) · pT (x)

|X |
−

(∑
x∈X

f(x)

|X |

)(∑
x∈X

pT (x)

|X |

)
=

=
∑
x∈Xa,t

f(x) · pT (x)

|X |
+
∑
x∈Xb,t

f(x) · pT (x)

|X |
− |B|
|X |
· 1

|X |
= 0 +

1

2|X |
− 1

2|X |
= 0
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Now let us look at the case where f agrees with hc in the target domain:

Cov[f(X), pT (X)] =
∑
x∈X

f(x) · pT (x)

|X |
−

(∑
x∈X

f(x)

|X |

)(∑
x∈X

pT (x)

|X |

)
=

=
∑
x∈Xa,t

f(x) · pT (x)

|X |
+
∑
x∈Xb,t

f(x) · pT (x)

|X |
− 1

2|X g|
=

1

2|X |
+ 0− 1

2|X |
= 0

Thus our criterion holds in this example.
We now only need to show that this example gives the same lower bound as in Ben-David
and Urner (2012). For a given class HC and its corresponding problem class

WC,n := {(PS , PT , f)|PS is uniform over X , PT is uniform over T,

f = 1A, where |A| = |B| = |T | = |U |, U = X \ T,B = X \A,

C = (A ∩ T ) ∪ (B ∩ U) , or C = (A ∩ U) ∪ (B ∩ T )}

we can make a similar argument as in Ben-David and Urner (2012), that is we can show
that the Left/Right-problem can be reduced to the DA problem WC,n and use the lower
bound for the Left/Right-problem Wuni

n
2

over a set X ′ of half the size of X to derive the
lower bound for the DA-problem. Note that the target support T for all pairs (PS , PT ) ∈
WC,n cannot be any subset of size n

2 , but has to fulfill |T ∩ C| = |T ∩ (X \ C)| = n
4 .

Therefore there are fewer pairs in WC,n than in Wn and Wuni
n . We will therefore not be

able to achieve the same lower bound for WC,n as for Wn, but only the same bound as
for Wn

2
. In order to construct samples over X from samples over X ′, we will need two

copies of the domain X ′ of size n
2 , such that one copy corresponds to the set C in X

and the other copy corresponds to X \ C. Thus each element of X ′ is assigned to two
elements of X – one in C and one in X \ C. We will then take the samples over X ′ and
assign each sample element randomly to its corresponding element in either C or X \C.
We will now show how this construction works.

Analogous to the proof of the original theorem, we suppose the samples L′ = {l1, . . . , ls}
and R′ = {r1, . . . , rs} (each of size s) and a sample M ′of size t + 1 are samples from
the the Left/Right-problem, coming from a triple (UÃ, UB̃, UX̃) of distributions inWuni

n
2

.

We will denote the subset of C corresponding to the subset Ã ⊂ X ′ as Ã1 and the cor-
responding subset in X \ C as Ã2. Similarly, we denote the corresponding subsets of
B̃ ⊂ X ′ in C and X \ C as B̃1 and B̃2 respectively.
For a given hypothesis class H and its corresponding set C we will construct the labeled
source sample S′ and the unlabeled target sample T ′ over X as follows.

For the construction of T ′ let M ′′ = M ′ \ {p} for some uniformly chosen p from M ′. For
every element of mj ∈ M ′′ we then randomly choose the corresponding element of mj

in C or in X \C with probability 1
2 each. The chosen elements then form the unlabeled
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target sample T ′ over X . We see that T ′ is uniformly distributed over either Ã1 ∪ Ã2

or uniformly distributed over B̃1 ∪ B̃2. T ′ can therefore be seen as distributed by the
marginal DT from a distribution PT from WC,n.

Now we will construct S′ in a similar way. With probability 1
2 we will choose the next

element of out L′ or our of R′ respectively. This element of X ′ has two corresponding
elements in X . We will now choose with probability 1

2 its corresponding element in C or
its corresponding element in X \C. If we choose li from L′ first, we will give it the label
1 if we then chose the corresponding element in C and the label 0 if we then chose the
corresponding element in X \C. Correspondingly, if we choose ri from R, we will give it
the label 0 if we then chose the corresponding element in C and the label 1 otherwise.

The resulting sample S’ can be viewed as coming from a uniform source distribution DS
over X = Ã1 ∪ B̃1 ∪ Ã2 ∪ B̃2 with a labeling function f , mapping points from Ã1 ∪ B̃2 to
1 and points from Ã2 ∪ B̃1 to 0. Furthermore, T ′ can be considered to come from a tar-
get distribution DT that is either equal to UÃ or to UB̃. We can see that (PS , PT ) ∈ WC,n.

Now suppose there exists a DA-learner A that (ε, δ, s, t)-solves the DA-problem WC,n.
Furthermore suppose A outputs the hypothesis h. We can now construct a learner for the
Left/Right-problem that has error ε with probability 1−δ in the following way. If h(p) = 1
and p ∈ C or h(p) = 0 and p /∈ C the Left/Right-solver outputs UÃ and otherwise the
Left/Right-solver outputs UB̃. With this reduction of the Left/Right-problem to the
DA-problem (which works analogous to the proof of Lemma 44 in Urner (2013)), we can
derive almost the same lower bound as in Theorem 41 in Urner (2013).

Since this lower bound also depends on the size of X , this lower bound implies an impos-
sibility result for DA-learnability in the case where X is infinite. We therefore see that
the criterion formulated in Assumption 1 is not sufficient to change the lower bound in
a meaningful way.
A potential weak point in this argument could be that we did not capture the whole idea
of the original IGCI-criterion, since we only considered f but not its derivative f ′. We
will now examine whether the bound changes if we require CovZ∼Uni(X )[f

′(Z), pT (Z)]
to be 0 instead of CovZ∼Uni(X )[f(Z), pT (Z)]. But first we need to provide X with the
necessary structure to define f ′. Since X is not continuous, we need an embedding into a
metric space X ′ where we can define a derivative f ′. We now can consider the evaluations
of f ′ in X .

Assumption 2 (Second IGCI criterion for binary classification). Let X be a finite do-
main. If we have a causal labeling X → Y , that is, the features X cause the labels
Y , then we obtain the following relation between the labeling function f and the cause
(target) distribution pT :

CovZ∼Uni(X )[f
′(Z), pT (Z)] = 0
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5.2. Independence of Cause and Mechanism

where Z is a random variable that is uniformly distributed over the source domain X .

We can again give the same lower bound as in the previous DA-problem with this addi-
tional criterion:

Theorem 12 (Lower bound with second IGCI causal assumption). For every finite do-
main X , for every ε and δ with ε+δ < 1

2 , no algorithm can (ε, δ, s, t)-solve the DA problem
for the class WC,n of pairs (PS , PT ) satisfying the covariate shift with C(DS ,DT ) ≥ 1

2 ,
dHC∆HC (DS ,DT ) = 0, optPT (HC) = 0 and the second IGCI criterion for binary classifi-
cation, if

s+ t ≤ min

{√
ln(2)|X |,

√
ln(

1

2(ε+ δ)
)|X |

}
− 1.

Proof. We can again take Wn and H(1,0) from the counterexample from Urner (2013).
For this hypothesis class and the corresponding DA-problem it has already been shown
that C(DS ,DT ) ≥ 1

2 , dHC∆HC (DS ,DT ) = 0 and optPT (HC) = 0. Furthermore the bound
from Theorem 12 has already been shown for this problem class in Urner (2013) (see The-
orem 10).

The only thing that is left to show is that the second IGCI criterion for causality in
binary classification holds in this counterexample.
We can find an embedding X → X ′, such that for every (PS , PT ) ∈ WC,n we can expand
the corresponding labeling function f in such a way that it is differentiable in X ′. This
embedding into a continuous domain X ′ is only restricted by the n values of f in X . We
can therefore find an embedding such that f is differentiable and we have f ′(x) = 0 for
all x ∈ X . Intuitively, we can take any smooth4 function f : X ′ → [0, 1] that "connects"
the values of f(x) with x ∈ X .5 Thus, we get

CovZ∼Uni(X )[f
′(Z), pT (Z)] =

1

|X |
∑
x∈X

f ′(x)pT (x)−

(
1

|X |
∑
x∈X

f ′(x)

)(
1

|X |
∑
x∈X

pT (x)

)

=0 +
1

|X |
· 0 = 0.

Therefore the second IGCI criterion for binary classification is fulfilled.

Before ending this subsection dealing with the usefulness of the IGCI model for DA in
binary classification, let us have a brief look at the other requirements of the original
IGCI-model and discuss their usefulness and applicability for DA.

4continuous differentiable
5 f ′(x) = 0 for x ∈ X is then implied by the fact that there are local extrema in x for all x ∈ X .
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Looking back at the original IGCI model, one of its requirements was that the density of
the cause is non-zero on the whole domain. If this holds for source and target distribu-
tions, this would imply that they have the same support. One of the major assumptions
we made in the setting we were considering was target realizability. If target- and source
support are the same, this assumption would also imply source realizability. Combined
with covariate shift, this gives us a joint hypothesis error of 0. With the assumption that
dH∆H(DS ,DT ) = 0, we get DA-learnability in this case according to Theorem 7.

But in this case the shared support was the only criterion used from the IGCI-model.
It is questionable to what extend this is a criterion for causality, since one can imagine
an intervention that excludes a certain range of values and that produces the target do-
main. However the IGCI does not deal with interventions and it is easy to imagine an
intervention violating any of the IGCI conditions. In particular its core criterion – the
covariance between f ′(X) and p(X) being 0 – can easily be violated by intervention in
a causal setting. But even if we think about shifts in distribution not happening by an
intervention of the observer, but by some different mechanism, it still seems possible that
this shift may also imply a shift in the support of the distribution. Therefore positive
density does not seem to be a relevant aspect of the IGCI model to our problem.

The last criterion we have not examined yet is the monotonicity of the diffeomorphism f
in the original IGCI-model. This translates to a monotonously increasing labeling func-
tion f in our binary classification setting. For this definition to make sense, we first
need to have an ordering of X . Let us assume in the following that X is an ordered
set. If we are to keep the deterministic nature of our DA setting, f can only have values
0 and 1 on X . This implies that the labeling function f has the form of a threshold
function, i.e. there is a x ∈ X such that f(x′) = 0 for all x′ < x and f(x′) = 1 for
all x′ ≥ x (or f(x′) = 0 for all x′ ∈ X ). With this quite restricted structure, we can
simply learn the threshold function (since the corresponding threshold hypothesis class
has VC-dimension 1) in the source-domain and select the hypothesis from H fitting the
learned threshold function best in target domain. This will lead to the following theorem.

Theorem 13. Let X be an ordered finite domain. Let furthermore H be a hypothesis class
with finite VC-dimension d. There is a DA-learner outputting elements of H that is able
to solve the DA-problem for any pair (PS , PT ) of source- and target distributions PS and
PT satisfying covariate shift with C(DS ,DT ) ≥ 1

2 , optPT (HC) = 0 and the corresponding
labeling function f being deterministic and monotonously increasing. In particular there
exists a constant c (independent of |X |), such that for every ε, δ > 0 for sample sizes

s ≥ c1+log( 2
δ

)

( ε
4

)2 and t ≥ cd log( 2
ε

)+log( 1
δ

)

( ε
2

)2 , with probability 1− δ we have

Ex∼DT [LPT (A(S, T ))] ≤ ε

Proof. Let ε′ = ε′′

2 = ε
4 and δ′ = δ′′ = δ

2 . First we note that a monotonous deterministic
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labeling function leads to realizability within the hypothesis class Hthres of threshold
functions. We know that this hypothesis class has VC-dimension 1. According to The-
orem 3, we can therefore learn the problem in the source domain up to error ε with
probability 1 − δ′ with a sample-complexity of c1+log 1

δ
ε′2 in the source domain. Since we

have a weight ratio C(DS ,DT ) ≥ 1
2 , we can now use Observation 1 to derive that we get

error 2ε′ with probability 1− δ′ for the same h′ we learned with c
1+log 1

δ′
ε′2 source samples.

Now we only need to find an h ∈ H that agrees with the learned h′ ∈ Hthres on the
target domain. We will therefore label the unlabeled target sample U with the learned
hypothesis h′ ∈ Hthres and take the resulting labeled data U ′ as input for an empirical
risk minimization algorithm A′ for hypothesis class H. According to Theorem 3 the
labeling h′ on DT can be learned up to error ε′′ with probability 1 − δ′′ with a sample
complexity of c

d log( 1
ε′′ )+log 1

δ′′
ε′′2 . Therefore A′(U ′) has error ε with probability 1− δ if we

the source sample has at least c1+log 2
δ

( ε
4

)2 elements and if the target sample has at least

c
d log( 2

ε
)+log 2

δ
( ε

2
)2 elements.

This theorem shows that our previous lower bound that depended on the domain size
|X | no longer holds if we assume the labeling function to be monotonous. Note that we
did not make any assumption about causal direction or the dependence or independence
of cause and mechanism.

In conclusion, we did not find a criterion inspired by the IGCI model for causality that
made the DA problem easy for the binary classification case.

Since our formulated criterion is only a statement about covariance, it still does not
necessarily imply that there is no dependence between the labeling function and the
probability distribution of the target domain. Indeed, both target distribution and label-
ing function together with the function class HC were constructed in a very dependent
way, in order for the argument from Ben-David and Urner (2012) to hold. We will explore
other formalizations later.

Before we discuss the regression case, we will briefly discuss whether our two criteria are
good models of causality. As mentioned after introducing the IGCI model in Chapter 3
the model is best justified by a particular kind of generating process for f ′, where f ′ is
generated as a piecewise constant function with f ′(x) = rj for x ∈ [ jn ,

j+1
n ) with rj being

independently and identically distributed. Under the assumption that one has chosen a
good reference distribution U for P , this then implies that CovZ∼U [f ′(Z), p(X)] is small
with high probability as Theorem 1 tells us. For our data-generating process, one could
argue that in our case we have f(j) = rj with rj being distributed according to Bernoulli
distributions with probability 1

2 . However in our examples one could not argue, that
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these rj are independently distributed, since in our construction of WC,n, for a given
pT , f(j) = 1 implies f(i) = 1 for certain i, j ∈ X . This would lead to the conclusion,
that our construction, while fulfilling IGCI inspired correlation criteria, does not follow a
data-generating process in which the generation of the labeling functionf is independent
from source and target distributions. Which in turn, by the Principle of Independence
of Cause and Mechanism, would suggest that either Y is a cause of X or that X and Y
have a common cause. This excludes the possibility that the only causal relation between
X and Y is X being a direct cause for Y , which is the causal relation that our IGCI
inspired assumptions should have modeled. However, if we do assume f to be generated
by f(j) = rj with rj being i.i.d from Bern(1

2) and consider the problem class W ′ of all
possible DA-problems that could result from that process, we getWC,n ⊂ W ′. Therefore,
a counterexample for the DA-learnability for WC,n would serve as a counterexample for
the DA-learnability of W ′.

We note that DS = Uni(X ) does not seem to be a good reference distribution for DT , in
the sense that

∫
|pS(x)−pT (x)|dx is small. This is in contrast to an intuition that might

justify the IGCI model in a causal setting. The assumption that
∫
|pS(x) − pT (x)|dx

is small, however, would again be a rather strong. It would for example imply that
dH∆H(DS ,DT ) is also small. Furthermore it would also imply that the risk under PS
and under PT are close for any hypothesis h ∈ H if we have covariate shift. This would
furthermore imply low joint hypothesis error, if we assume target realizability. Therefore∫
|pS(x)− pT (x)|dx being small makes the DA problem easy on its own.

IGCI model in regression

Before looking at other possible models for Independence of Cause and Mechanism, we
will move away from binary classification and consider the IGCI assumptions in the
regression case. We will again try to realize as many of the assumptions made by the
original IGCI model as possible. Therefore we will only look at regression problems from
domain [0, 1] to [0, 1]. First, we will consider a non-monotonous and non-differentiable
example which will work similar to our previous counterexamples.

We will again introduce two possible criteria for causality in the regression setting.

Assumption 3 (First IGCI criterion for regression). If we have a causal labeling X → Y ,
that is, the features X cause the labels Y , then we obtain the following relation between
the regression function f and the cause (target) distribution pT :

CovZ∼Uni([0,1])[f(Z), pT (Z)] = 0

where Z is a random variable that is uniformly distributed over the source domain X .
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Assumption 4 (Second IGCI criterion for regression). If we have a causal labeling
X → Y , that is, the features X cause the labels Y , then there is the following relation
between the regression function6 f and the cause (target) distribution pT ,

CovZ∼Uni([0,1])[f
′(Z), pT (Z)] = 0

where Z is a random variable that is uniformly distributed over the source domain X .

We will again construct an example where DA-learning is hard and where both IGCI
criteria for regression as well as all the assumptions we had in Theorem 10 (like covariate
shift, high weight ratio and low H-divergence) hold.

Since we are now in the regression case, we first need to clarify what kind of loss function
we will use. In the following section we will consider both 0-1-loss and `2-loss. In case of
the `2-loss we will have to replace the assumption aboutH-divergence with an assumption
about its generalization the discrepancy distance as described in Definition 22. Let L2

Q

denote risk for the `2-loss under distribution Q. For the `2-loss the discrepancy distance
of two distribution Q1, Q2 is

disc`2(Q1, Q2) = max
h,h′∈H

|L2
Q1

(h′, h)− L2
Q2

(h′, h)|

= max
h,h′∈H

|Ex∼Q1 [|h(x)− h′(x)|2]| − Ex∼Q2 [|h(x)− h′(x)|2]|.

We will now go on to construct a problem class Wreg,n of pairs of distributions (PS , PT )
and its corresponding hypothesis class HC,reg.

In the following we will again assume n to be divisible by 4. Consider a partition of
the domain [0, 1] = [0, 1

n) ∪ [ 1
n ,

2
n) ∪ · · · ∪ [n−1

n , 1] into n intervals of the same size. Now
consider only functions from [0, 1] to [0, 1] that map each of these intervals identically
to either constant 0 or constant 1. Now let the (marginal) source distribution DS be
uniform over [0, 1] and the (marginal) target distribution DT uniform over T a union of
n
4 intervals [ in ,

i+1
n ) with 0 ≤ i ≤ n

2 − 1 and n
4 intervals [ jn ,

j+1
n ) with n

2 ≤ j ≤ n − 1.
Now let HC,reg = {h1, h2} with h1(x) = 0 and h2(x) = 1 for all x ∈ [0, 1

2) and h1(x′) = 1
and h2(x′) = 0 for all x ∈ [1

2 , 1]. Furthermore we will again assume PS and PT to have
the same regression function, i.e., covariate shift holds. Now let this regression function
f : [0, 1]→ [0, 1] be defined by either

f(x) =

{
0 , if x ∈ ([0, 1

2) ∩ T ) ∪ ([1
2 , 1] \ T )

1 , if x ∈ ([0, 1
2) \ T ) ∪ ([1

2 , 1] ∩ T )

or

f(x) =

{
1 , if x ∈ ([0, 1

2) ∩ T ) ∪ ([1
2 , 1] \ T )

0 , if x ∈ ([0, 1
2) \ T ) ∪ ([1

2 , 1] ∩ T )

This construction follows the same idea as the previous counterexamples. We will now
consider the learning problem Wreg,n consisting of all pairs (PS , PT ) that result from a
construction as described above. This DA learning problem is similar to WC,n.

6which we assume to be differentiable almost everywhere in [0,1]
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5. Domain Adaptation under Causal Assumptions

Theorem 14 (DA-Hardness for regression under causal assumptions). Consider the
regression DA-problem Wreg,n with the function class HC,reg under either 0-1-loss or `2-
loss. For every finite number7 n there is no algorithm that can (ε, δ, s, t)-solve the DA
problem for the class Wreg,n of pairs (PS , PT ) satisfying the covariate shift, C(DS ,DT ) ≥
1
2 , dHC,reg∆HC,reg(DS ,DT ) = 0, disc`2(DS ,DT ) = 0, optPT (HC,reg) = 0 and the first and
second IGCI criteria for regression, if

s+ t ≤ min

{√
ln(2)

n

2
,

√
ln(

1

2(ε+ δ)
)
n

2

}
− 1

Proof. First we will show that for problems in Wreg,n with HC,reg all of our assumptions
hold. The pairs (PS , PT ) of Wreg,n were constructed in such a way that covariate shift,
C(DS ,DT ) ≥ 1

2 and optPT (HC,reg) = 0 (for both 0-1-loss and `2-loss) hold. For the
calculation of the H-divergence we first note that HC,reg∆HC,reg = H0,1, since HC,reg
only contains two functions, which are each other’s opposites. It is easy to see that
dH0,1(Q1, Q2) = 0 for all distributions Q1, Q2. In particular, dHC,reg∆HC,reg(DS ,DT ) = 0.
For the discrepancy distance we note that all elements of HC,reg have only values in
{0, 1}, therefore, we have |h(x) − h′(x)|2 = 1[h(x) 6= h′(x)] for all h, h′ ∈ HC,reg. Thus,
we have disc`2(DS ,DT ) = dHC,reg∆DC,reg(DS ,DT ) = 0. For the covariance from the first
IGCI criterion we get

CovZ∼Uni([0,1])[f(Z), pT (Z)]

=

∫ 1

0
f(z)pT (z)dz −

(∫ 1

0
f(z)dz

)(∫ 1

0
pT (z)dz

)
︸ ︷︷ ︸

=1

=

∫ 1

0
f(z)pT (z)dz −

∫ 1

0
f(z)dz

=

n−1∑
i=0

(∫ i+1
n

i
n

f(z)pT (z)dz

)
︸ ︷︷ ︸

=0 for i with [ i
n
, i+1
n

)6⊂T∩f−1(1)

−1

2

=
∑

i∈{1...n−1}:[ i
n
, i−1
n

)⊂T∩f−1(1)

(∫ i+1
n

i
n

f(z)pT (z)dz

)
︸ ︷︷ ︸

= 2
n

− 1

2

=
n

4
· 2

n
− 1

2
= 0

7that is divisible by 4
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5.2. Independence of Cause and Mechanism

Thus the first ICGI criterion for regression is fulfilled. For the second ICGI criterion the
calculation is quite similar:

CovZ∼Uni([0,1])[f
′(Z), pT (Z)] =

=

∫ 1

0
f ′(z)pT (z)dz −

(∫ 1

0
f ′(z)dz

)
︸ ︷︷ ︸

=1

(∫ 1

0
pT (z)dz

)
︸ ︷︷ ︸

=1

=

∫ 1

0
f ′(z)pT (z)dz − 1

=

n−1∑
i=0

(∫ i+1
n

i
n

f(z)pT (z)dz

)
︸ ︷︷ ︸
=0 for i with [ i

n
, i+1
n

)6⊂T

−1

=
∑

i∈{1...n−1}:[ i
n
, i−1
n

)⊂T

(∫ i+1
n

i
n

f ′(z)pT (z)dz

)
︸ ︷︷ ︸

= 2
n

− 1

=
n

2
· 2

n
− 1 = 0

Therefore also the second ICGI criterion for regression holds.

Finally, we show that we can provide the same lower bound for the sample sizes s and t
of the labeled source sample L and of the unlabeled target sample U respectively, where
we substitute the domain size |X | by the number of intervals n. First, we again note
that since both f and all elements of HC,reg as well as only take values in {0, 1}, the
`2-loss becomes equivalent to the 0-1-loss: |f(x)− h(x)|2 = Ey∼Bern(f(x))1[h(x) 6= f(x)].
It therefore suffices to prove the bound only for the 0-1-loss. Now consider a random
mapping g : X × {0, 1} → [0, 1]× {0, 1} that maps every element (xi, yi) ∈ X × {0, 1} to
a random variable that is uniformly distributed on [ in ,

i+1
n )×{yi} with xi 6= xj for i 6= j.

Under this mapping every learning problem (PS , PT ) ∈ WC,n with hypothesis class HC
has a corresponding learning problem (P ′S , P

′
T ) ∈ Wreg,n with hypothesis class HC,reg, in

the sense that if one could solve the problem (P ′S , P
′
T ) ∈ Wreg,n it provides an equally

good solution for (PS , PT ) ∈ WC,n. Therefore a lower bound for the DA-learnability for
WC,n with HC must then also hold for Wreg,n with HC,reg. Thus, by using Theorem 11
we achieve the lower bound as stated in the theorem.

If the number of intervals n goes to infinity this theorem implies that the correspond-
ing DA-problem cannot be learned with a finite number of samples. However, we
still have not shown that we do not get DA-learnability in the original IGCI model,
since we have not looked at a monotonous and differentiable example. We will finish
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5. Domain Adaptation under Causal Assumptions

this section by providing a problem class Wmon,n of pairs (PS , PT ) for which covari-
ate shift and C(DT ,DS) ≥ 1

2 hold and such that the corresponding regression function
f : [0, 1] → [0, 1] is strictly monotonously increasing, continuous and almost everywhere
differentiable. Furthermore we will provide a corresponding function class HC,mon of
strictly monotonous, continuous and almost everywhere differentiable function for which
we have target realizability and dHC,mon∆DC,mon(DS ,DT ) = 0 and disc`2(DS ,DT ) = 0.
We will go on to prove a lower bound for the sizes of source and target samples necessary
to solve the DA problems of Wmon,n.

The marginal source and target distributions DS and DT of pairs (PS , PT ) ∈ Wmon,n will
be the same as for the pairs (P ′S , P

′
T ) ∈ Wreg,n, with the same construction of the set T .

For a given set T the regression function for (PS , PT ) will now be defined by either

f(x) =

{
i
n + n(x− i

n)2 for x ∈ [ in ,
i+1
n ) ⊂ ([0, 1

2) ∩ T ) ∪ ([1
2 , 1] \ T )

i+1
n − n( i+1

n − x)2 for x ∈ [ in ,
i+1
n ) ⊂ ([0, 1

2) \ T ) ∪ ([1
2 , 1] ∩ T )

or

f(x) =

{
i+1
n − n( i+1

n − x)2 for x ∈ [ in ,
i+1
n ) ⊂ ([0, 1

2) ∩ T ) ∪ ([1
2 , 1] \ T )

i
n + n(x− i

n)2 for x ∈ [ in ,
i+1
n ) ⊂ ([0, 1

2) \ T ) ∪ ([1
2 , 1] ∩ T )

The hypothesis class HC,mon = {h1, h2} will again consist of two functions that are
opposed to each other. In this case they will be defined in the following way:

h1(x) =

{
i
n + n(x− i

n)2 for x ∈ [ in ,
i+1
n ) ⊂ ([0, 1

2)
i+1
n − n( i+1

n − x)2 for x ∈ [ in ,
i+1
n ) ⊂ [1

2 , 1]

and

h2(x) =

{
i+1
n − n( i+1

n − x)2 for x ∈ [ in ,
i+1
n ) ⊂ ([0, 1

2)
i
n + n(x+ i

n)2 for x ∈ [ in ,
i+1
n ) ⊂ [1

2 , 1]

To get a better intuition for this problem class and hypothesis class we would refer
the reader to Figure 5.2 which provides some illustrations. For this problem class the
following theorem holds.

Theorem 15 (Hardness of domain adaptation for the IGCI model). For every finite num-
ber8 n there is no algorithm with outputs in HC,mon that can (ε, δ, s, t)-solve the DA prob-
lem under the 0-1-loss for the classWmon,n of pairs (PS , PT ) satisfying the covariate shift,
C(DS ,DT ) ≥ 1

2 , dHC,mon∆HC,mon(DS ,DT ) = 0,disc`2(DS ,DT ) = 0, optPT (HC,mon) = 0
and the second IGCI criterion for regression, if

s+ t ≤ min

{√
ln(2)

n

2
,

√
ln

(
1

2 (ε+ δ)

)
n

2

}
− 1

For the `2-loss we have LPT (h) ≤ 2
15n2 for all h ∈ HC,mon. But for ε < 2

15n2 the same
bound holds as lower bound for the sample complexity needed to solve the DA-problem

8that is divisible by 4

58



5.2. Independence of Cause and Mechanism

under the `2-loss, i.e., no algorithm with outputs in HC,n can (ε, δ, s, t)-solve the DA
problem under the `2-loss, if

s+ t ≤ min

{√
ln(2)

n

2
,

√
ln

(
1

2 (ε+ δ)

)
n

2

}
− 1.

Proof. The proof of this theorem works analogous to the proof of Theorem 14 for the
0-1-loss: Let X = {x0, x2, . . . , xn−1} and C = {x0, . . . , xn

2
−1}. We can define a random

mapping g : X × {0, 1} → [0, 1] × 0, 1, that maps every element (xi, yi) ∈ X × {0, 1} to
a random vector Ui = (Xi, Yi) such that Xi is uniformly distributed over [ in ,

i+1
n ) with

xi 6= xj for i 6= j and

Yi =

{
i+1
n − n( i+1

n −Xi)
2 if yi = 0

i
n + n(Xi + i

n)2 if yi = 1.

Under this mapping every learning problem (PS , PT ) ∈ WC,n with hypothesis class HC
has a corresponding learning problem (P ′S , P

′
T ) ∈ Wmon,n with hypothesis class HC,mon

in the sense that a solution for the problem (P ′S , P
′
T ) ∈ Wmon,n provides an equally good

solution for (PS , PT ) ∈ WC,n. Therefore a lower bound for the DA-learnability of WC,n

with H must then also hold for Wmon,n with Hmon,C .

For the `2-loss basically the same arguments hold, since it is equally hard to distinguish
between the two hypotheses in HC,mon in both the 0-1-loss and for the `2-loss. However
the loss term gets smaller since for every interval [ in ,

i+1
n ) we have

∫ i+1
n

i
n

|h(x)− f(x)|2 dx ≤
∫ i+1

n

i
n

∣∣∣∣∣ in + n

(
x− i

n

)2

−

(
i+ 1

n
− n

(
i+ 1

n
− x
)2
)∣∣∣∣∣

2

dx

=

∫ 1
n

0

∣∣∣∣∣nx2 −

(
1

n
− n

(
1

n
− x
)2
)∣∣∣∣∣

2

dx =

∫ 1
n

0

∣∣2nx2 − 2x
∣∣2 dx

=

∫ 1
n

0
4|n2x4 − 2nx3 + x2|dx = 4

[
1

5
n2x5 − 1

2
nx4 +

1

3
x3

] 1
n

0

=4

∣∣∣∣n2

5
· ( 1

n
)5 − n

2
(
1

n
)4 +

1

3
(
1

n
)3

∣∣∣∣ =
4(6− 15 + 10)

30n3
=

2

15n3

for every h ∈ HC,mon and a regression function from Wmon,n. Therefore we get

LPT (h) =

∫ 1

0
pT (x)|f(x)−h(x)|2dx =

n−1∑
i=0

∫ i+1
n

i
n

pT (x)|f(x)−h(x)|2dx ≤ n

2
·2· 2

15n3
=

2

15n2
.

To be more precise, we either have LPT (h1) = 2
15n2 and LPT (h2) = 0 or LPT (h1) = 0

and LPT (h2) = 2
15n2 . Thus LPT (h) < 2

15n2 implies mathcalLPT (h) = 0 for h ∈ HC,mon.
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5. Domain Adaptation under Causal Assumptions

In this case the risk of h under the 0-1-loss is also 0. Therfore, if a DA-learner A was
able to (ε, δ, s, t)-solve Wmon,n for ε < 2

15n2 with respect to the `2-loss, then A would
also (ε, δ, s, t)-solveWmon,n with respect to the 0-1-loss. Therefore we get the same lower
bound for Wmon,n under the `2-loss for ε < 2

15n2 .

Lastly, we have to check, that all the conditions hold. Obviously, we have covariate shift,
target realizability, and a weight ratio of 1

2 .
For dHC,mon∆HC,mon(DS ,DT ), we again note that HC,mon∆HC,mon = H(1,0), which makes
dHC,mon∆HC,mon(DS ,DT ) = 0 trivial.
The discrepancy distance is also easy to calculate, since there are only two hypotheses
in HC,mon disc`2(DS ,DT ) = |LDS (h1, h2)− LDT (h1, h2)| = | 2

15n2 − 2
15n2 | = 0.

The last remaining condition is CovZ∼Uni([0,1])[f
′(Z), pT (Z)] = 0. For every of the n

intervals we get ∫ i+1
n

i
n

f ′(x)dx = f

(
i+ 1

n

)
− f

(
i

n

)
=
i+ 1

n
− i

n
=

1

n
.

Therefore

CovZ∼Uni([0,1])[f
′(Z), pT (Z)] =

∫ 1

0
f ′(x)pT (x)dx−

(∫ 1

0
pT (x)dx

)(∫ 1

0
f ′(x)dx

)
=

∑
i:[ i
n
, i+1
n

)⊂T

∫ i+1
n

i
n

f ′(x)pT (x)dx+
∑

i:[ i
n
, i+1
n

)6⊂T

∫ i+1
n

i
n

f ′(x)pT (x)dx− 1 · 1

=
n

2
· ( 1

n
· 2) +

n

2
· ( 1

n
· 0)− 1 = 1 + 0− 1 = 0.

Note that for n→∞ the `2-loss becomes 0 for every choice of h ∈ HC,mon and is there-
fore easy to learn. However, this fact does not change, if we allow similarly constructed
regression functions as in Wmon,n that would violate the second IGCI criterion for re-
gression. Therefore the reason the risk is low in this case does not seem to be causality.

There are only two conditions of the original IGCI model left that are not met in the
previous theorem. The first of these conditions is that the mechanism f : [0, 1] → [0, 1]
is supposed to be a diffeomorphism. However, in our bound it is only differentiable al-
most everywhere. But we could easily construct a similar function that is differentiable
everywhere and that works in the same way, since f is continuous everywhere and dif-
ferentiable in all but a finite number of points.

Lastly, the IGCI model assumed the density of the cause to be positive in everywhere
in [0, 1], but our construction violated this for the target distribution. However, if we
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5.2. Independence of Cause and Mechanism

did not allow the density of the target distribution to be 0 anywhere in [0, 1], target
realizability would imply source realizability. In this case we get DA-learnability, but
again this is not due to any causal criterion.
In conclusion the IGCI model does not seem to help to get rid of the lower bounds as
provided in Ben-David and Urner (2012), Urner (2013), unlike we initially hoped.

Independence of Cause and Mechanism as Statistical Independence

Another way of formulating the independence of cause and mechanism could be the
definition of a meta-distribution over the marginal-distribution over pairs (DT , f) and
the postulation of statistical independence between (the random variables) DT and f .
To give some intuition for this, one can imagine that the mechanism and the distribution
change between data sets. However, if we are in a causal scenario the changes of the
marginal distribution D and the labeling function f would not affect one another. Thus,
given a mechanism every distribution of the cause will be as likely as if the mechanism was
not given. To check if this statistical independence condition is fulfilled, we would first
need to define a meta-distribution. This is were we encounter a problem: Since only one
target and one source distribution was given, this leaves us very little information to infer
a meta-distribution. Therefore this meta-distribution will likely only have theoretical
relevance and not result in a condition that can be checked empirically, if we only have
one source domain.
Given some problem set, it might seem most natural, to define the meta-distribution as
a uniform distribution over all problems considered, if possible. Indeed, in the setup of
our counterexample this is possible, since the problem set WC,n from Theorem 11 is a
finite set.
But does statistical independence hold in this case? Unfortunately not, since for some
pairs (DT , f) the corresponding distribution PT is not contained in WC,n, while there
might be another pair (P ′S , P

′
T ) in WC,n such that the corresponding labeling function is

f . To be more precise, if DT is determined, then only those labeling functions f will be
allowed that are indicator functions 1A for a set A with |A ∩ T | = |A ∩ U |, where T is
the support of DT and U its complement. Therefore all other f are excluded and we will
not get statistical independence. Maybe this finally yields a criterion for causality that
helps with domain adaptation?
Unfortunately not – at least if we do not change our notion of DA-learnability. We can
define a meta-distribution in a way that gives us statistical independence. For this we
will define the problem set

W ′ := {(PS , PT )| the marginal DS is uniform over X , the marginal DT
is uniform over some set T ⊂ X , covariate shift holds and the corresponding
labeling function f is the indicator function 1A, over some set A ⊂ X}.

Obviously, we have WC,n ⊂ W ′.
Now, if we do not change our notion of learnability in the presence of a meta-distribution,
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it will again suffice to show that for every DA-learner A there exists a pair (PS , PT ) in
the support of our meta-distribution, i.e. W ′, such that A fails to learn (PS , PT ). We
have already seen that for any learner A there exists a pair (PS , PT ) ∈ WC,n ⊂ W ′, such
that A fails on (PS , PT ).
One could argue that the meta-distribution should contain both target and source distri-
butions, and that they should be considered as identically and independently distributed
random variables. We can obtain a meta-distribution fulfilling this condition if we define
the problem set

W ′′ = {(PS , PT )|DS is uniform over some set D ⊂ X ,DT is uniform over

some set T ⊂ X , f is the indicator function of some set A ⊂ X}

and take the uniform distribution overW ′′. In this case, we of course lose the weight-ratio
assumption for most instances of (PS , PT ). However, we can still require possible coun-
terexamples to fulfill this condition. And indeed, since W ′ ⊂ W ′′ we can construct the
same counterexamples for this meta-distribution as for the previous meta-distribution.
In conclusion, statistical independence between the distribution of the features and the
labeling function does not seem to help for the DA-problem. If anything, the indepen-
dence required seems to make the problem even more difficult.

Independence of Cause and Mechanism as Algorithmic Independence

A kind of “independence between cause and mechanism” we have not examined yet, is
the algorithmic independence criterion, introduced in Chapter 3. Here we can make
the argument that for our counterexample from Theorem 11 to work, knowing the set
T (which serves as target domain) gives us information for the set A (which was con-
structed, such that we have either f = 1A or f = 1X\A for the labeling function f). Thus
knowing DT (and its support T ) in our problem classWC,n restricts the choice of A from(|X |/2
|X |/4

)
·
(|X |/2
|X |/4

)
to only two possible choices, if we also know the corresponding hypothesis

class HC . Without any formal proof, it now seems plausible that the conditional mini-
mum description length for f given DT is shorter than the minimum description length
for f , without knowing DT . Therefore f and DT would seem causally related.
However, this description length would also depend on the hypothesis class HC and
would be different for other hypothesis classes. While we would probably often get some
reduction of description length in other hypothesis classes it will never be as drastic as in
this example. But a good criterion for (objective) causality should probably not depend
on our choice of hypothesis class. It is therefore unclear if this argument is an actual
sign for causality. Furthermore it is unclear how this could result in a positive criterion
making domain adaptation easy.
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Figure 5.2.: This figure illustrates the problem classWmon,8 used for Theorem 15. a and b show
h1, h2 ∈ HC,mon the elements of of the corresponding hypothesis class. c and d
show two opposing labeling functions f1 and f2 that co-occur with some target
distribution PT1 . e and f show the same labeling functions f1 and f2 but with the
opposite PT2 (with T2 = [0, 1] \ T1). g and h give another example of two opposing
labeling functions f3 and f4 and a different target distribution PT3

. Regression
functions drawn as red/blue coincide with h1/h2 respectively on the target domain.
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6. Discussion

In this thesis we introduced the problem of Domain Adaptation in the context of Learning
Theory, as it was used in Ben-David et al. (2010a, 2006, 2010b), Ben-David and Urner
(2012). Furthermore, we introduced some possible formalizations for causality. We then
tried to formulate a criterion for causality, in the hope that it would be useful for Domain
Adaptation learnability. In particular, we tried to find a criterion that would overcome
the impossibility results from Ben-David et al. (2010b) or the lower bound from Ben-
David and Urner (2012).

We focused primarily on the causal direction as opposed to the anti-causal direction.
First we noted that causality criteria like Structural Equation Models that make use of
the randomness within one domain allow deterministic labeling functions as were used
in Ben-David and Urner (2012) and Ben-David et al. (2010b) to be considered as causal
scenarios. Criteria resulting from the randomness within one domain, would therefore not
help to eliminate the impossibility results of Ben-David et al. (2010b) or the lower bound
of Ben-David and Urner (2012). The only criteria we could obtain for the distribution
shift between domains resulting from SCMs were covariate shift and a generalization of
covariate shift. Since covariate shift already holds for the results from Ben-David et al.
(2010b) and Ben-David and Urner (2012), it obviously does not help to overcome these
results.

We therefore looked at causality criteria, in particular the Principle of Independence of
Cause and Mechanism, that we hoped might distinguish between the causal and the
anti-causal direction for deterministic processes. Thus, we looked at the IGCI-model for
regression, as it was used in Janzing et al. (2012), Janzing and Schölkopf (2015). Inspired
by this IGCI-model, we gave several attempts for a criterion that indicates a causal
relationship between the feature vectors and the labels (i.e. the feature vectors cause
the label) in a binary setting. For each criterion we came up with, we could construct
lower bounds similar to the one given in Ben-David and Urner (2012) for the sample
complexity needed to solve the DA-problem. These lower bounds were dependent on the
cardinality of the feature space |X | and thus lead to counter examples for DA learnability.
We concluded that causality criteria inspired by the IGCI model do not seem to help
for DA learnability in binary classification. We then looked at a regression model that
matched most of the criteria for the IGCI-model1 and were again able to construct a
similar counterexample as the one given in Ben-David and Urner (2012).2

1in fact it matched all, but “pT (x) = 0 for all x ∈ [0, 1]," which on its own would have lead to DA-
learnability combined with the other criteria from Ben-David and Urner (2012).

2However, for the `2-loss the risk was low for all hypothesis in the corresponding hypothesis class.
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6. Discussion

We then discussed briefly whether a formulation of the Principle of Cause and Mechanism
in terms of statistical independence for a meta-distribution of distributions of causes and
mechanisms (i.e. labelings) would lead to DA-learnability. We came to the conclusion
that even if we knew this meta-distribution – which in practice we likely would not, mak-
ing a possible criterion like this not very useful – a statistical criterion would not exclude
scenarios as in the counterexample from Ben-David and Urner (2012). Rather, a meta-
distribution could tell us that these scenarios are unlikely (i.e., the meta-distribution
assigns them low probability). For finite sample bounds this independence seemed to
make our DA-problem even harder, since the problem classes can get larger.

Lastly, we briefly discussed whether a formulation of the Principle of Cause and Mech-
anism in terms of algorithmic independence would make the DA-problem easy. While
in our particular DA problem W (which was given in Ben-David and Urner (2012)),
knowing H and knowing the target distribution pT significantly reduced the number of
possible labeling functions f and therefore arguably its description length, we were not
able to formulate any positive causality criterion that would make the DA-problem easy.
Furthermore, as argued for the statistical independence criterion, we could embedW into
a larger problem classW ′, where knowing H and knowing pT would not reduce the num-
ber of possibilities for f . We are therefore not convinced that algorithmic information
criteria would help to solve the DA-problem from Ben-David and Urner (2012).

In summary, we explored several formalizations for the causal direction as an indepen-
dence between the marginal distribution of the cause and the labeling and showed that
the DA problem could still be hard under these causal assumptions. We also do not
see, how any independence statement would help to achieve finite sample bounds, since
this absence of information seems to make the problem harder. In the best case this
independence would imply that only low probabilities 3 are assigned to possible coun-
terexamples. For these scenarios it would also be necessary to make further assumptions
about the generating process of cause and mechanism, which might be difficult in practice.
We therefore believe that, in order to provide meaningful results for domain adaptation
learnability in binary classification in a causal scenario one would need to change the no-
tion of learnability to something that is not distribution free or consider the anti-causal
direction. While the anti-causal direction does not give us any justification for the co-
variate shift assumption, a dependence between the distribution of the cause and the
mechanism, might be helpful to make use of the unlabeled target data. We also briefly
discussed the use of causal assumptions for domain adaptation in regression. While we
could construct similar lower bounds for our examples, we do not believe our discussion
of the regression case to exhaustive. Since causality seems to be formalized more clearly
in the continuous case, we therefore believe that exploring the use of causality in domain
adaptation for regression scenarios could still be interesting. This concludes the summary
of our results.

We will now give a discussion about the use of causal assumptions in learning theory
in general - in particular their use for finite sample bounds in binary classification. We

3in terms of the generation process for cause and mechanism
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will then discuss possible directions for future work. While many more complex causal
models are possible, will only discuss two the two most simple causal scenarios here –
the causal and the anti-causal case.

In the causal case, it is likely that if in practice we have prior knowledge of the data-
generating process, it is knowledge of the mechanism determining the effect from the
cause. This could be viewed as information about a restricted hypothesis class H that is
realizable, or has small approximation error4. On the other hand, a causal mechanism,
would likely give us no prior information about the distribution of the feature vectors.
These intuitions are captured well in common assumptions in learning theory – i.e., we
often assume a restricted hypothesis class H in order to get distribution free bounds on
the estimation error5, which arguably only yields meaningful results, if the approximation
error of H is small.

For the anti-causal direction, it also seems plausible, that the prior knowledge we have is
knowledge of the mechanism. However, in the anti-causal direction in classification, the
mechanism would be a generative model, where the labels generate the feature vectors.
The knowledge of a class of gernerative models could be thought of as knowledge of a class
of conditional distributions P of feature vectors, given the labels. One could then use
this class to find a restricted hypothesis class H that contains all possible Bayes classifiers
resulting from combining conditionals in P and marginal distributions over the labels.
But our knowledge of the data would not only be restricted to this hypothesis class H,
but also contain information about the possible marginal distributions of feature vectors
x, that could result from a class of conditionals P. We believe, it would be possible
to use that knowledge to obtain better finite sample bounds. These bounds would not
be distribution free, in the sense that they make no assumption about the marginal
distribution of the feature vectors. However, it might be possible to find bounds that are
independent of the marginal distribution of feature vectors x, given that the distribution
arises from a generative process as described by P. An example for upper and lower finite
sample bounds can be seen for isotropic Gaussian conditionals in Li et al. (2017).

For these generative processes it seems furthermore likely that one could provide semi-
supervised learning guarantees, as these generative processes might lead to clusterability,
which in turn would imply the usefulness of unlabeled data in semi-supervised learning
and domain adaptation scenarios. This, however, would not be the case for all possible
generative models. For example if the conditional distributions for the two labels are
uniform in [0, 1] and in [1, 2] respectively, then no clusterability arises.

However, for sufficiently smooth distributions (e.g., distributions that fulfill the Lipschitz-
condition), we might get clusterablity due to the Lipschitzness that would be implied in
the labeling function (compare to Urner et al. (2012)). It is possible that under some

4the approximation error of an hypothesis class is defined by inf h ∈ HLP (h)
5The estimation error of a hypothesis the difference between its risk and the best risk achievable in the
hypothesis, i.e., LP (h)− infh′∈H LP (h′)
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6. Discussion

conditions this might lead to probabilistic Lipschitzness, a property which was shown to be
useful for semi-supervised learning and domain adaptation scenarios in Urner (2013).6

One example one might explore are Gaussian conditionals. These could be seen as as
Gaussian additive noise models, as introduced in Chapter 3 for a binary classification
setting. In Li et al. (2017), upper and lower bounds for classification and clustering in a
generative model with isotropic Gaussians are introduced. Combined with the results of
Castelli and Cover (1995) and Castelli and Cover (1996), these bounds could provide a
comparison between supervised and semi-supervised learning techniques and show that
unlabeled data indeed helps in this generative example.7

To conclude, we did not find any positive result for DA learnability that resulted from
the Principle of Independence of Cause and Mechanism. For future work, we suggest
to consider the anti-causal direction instead and to examine whether generative models
help to make use of unlabeled data for semi-supervised as well as for domain adaptation
scenarios.

6Note that Urner (2013) primarily focuses on probabilistic Lipschitzness in deterministic scenarios.
However, generative models will likely give rise to non-deterministic labeling functions. The use of
probabilistic Lipschitzness in these scenarios remains – to the best of our knowledge – unexplored.

7Note that for a fair comparison, it is indeed necessary to look at lower bounds for supervised learning
methods that assume a generative model.
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A. VC-dimension of H∆H

In the bound from Theorem 2, there still remains an unknown quantity: the VC-
dimension of H∆H. In Ben-David et al. (2010a) it is stated that

V C(H∆H) ≤ 2 · V C(H) (A.1)

However, the sketch of proof of the paper does not actually lead to this result, but gives
a slightly worse bound of

V C(H∆H) ≤ 4V C(H) log(V C(H)). (A.2)

In another paper of the same author the statement (A.1.) is claimed Ben-David and
Urner (2012) again, but even though the given sketch of proof is different, it only serves
to give the bound including the additional log-factor. In Mansour et al. (2009) (A.1) is
claimed without a proof or reference as well. It is still unclear if the better bound holds.
1 For this master thesis, we will therefore only use the weaker result and provide a proof,
even though it is very likely that the stronger version still holds.

Proposition 3. Let V C(H) = d. Then we get the following bound for the VC-dimension
of H∆H:

V C(H∆H) ≤ 4d log2(4dl)

Proof. Let C ⊂ X with |C| = n. By Sauer’s Lemma, we get the following bound on the
number of hypotheses in HC :

|HC | ≤
d∑
i=0

(
n

i

)
≤ (n+ 1)d

Note that h∆h′ = h′∆h for all h, h′ ∈ H. Thus we only have to consider half of all
possible combinations between different h, h′, when counting the hypotheses in HC∆HC .

1If H has a compression scheme of size V C(H), we have a compression scheme of size 2V C(H) for
H∆H. Therefore the VC-dimension of H∆H is actually bounded by 2V C(H) in this case. There
are many classes H that have been shown to have a compression scheme of size V C(H), but it still
remains an open question, if there is always a compression scheme of that size. Therefore it would
also be interesting to find an example, where V C(H∆H) > 2V C(H), because it would also serve to
disprove the claim about the existence of a compression scheme of size V C(H).
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A. VC-dimension of H∆H

Furthermore h∆h = h′∆h′ for all h, h′ ∈ H. So this function needs to be counted only
once. Therefore:

|(H∆H)C | = |HC∆HC | ≤
|HC |(|HC | − 1)

2
+ 1 ≤ (n+ 1)2d

2

We would now like to find an n such that:

(n+ 1)2d

2
< 2n

⇔ 2d <
(n+ 1)

log2(n+ 1)

Setting n := 4d log2(4d), we see:

4d log2(4d) + 1

log2(4d log2(4d) + 1)
> 2d

2 log2(4d) + 1

log2((4d+ 1) log2(4d))

> 2d
2 log2(4d) + 1

log2(4d+ 1) + log2(log2(4d))

> 2d
2 log2(4d) + 1

log2(4d) + 1 + log2(log2(4d))

> 2d

Thus V C(H∆H) ≤ 4d log2(4d).
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